Denoise pre-training for segmentation neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU132911" target="_blank" >RIV/00216305:26220/19:PU132911 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Denoise pre-training for segmentation neural networks
Popis výsledku v původním jazyce
This paper proposes a method for pre-training segmentation neural networks on small datasets using unlabelled training data with added noise. The pre-training process helps the network with initial better weights settings for the training itself and also augments the training dataset when dealing with small labelled datasets especially in medical imaging. The experiment comparing results of pre-trained and not pre-trained networks on MRI brain segmentation task has shown that the denoise pre-training helps the network with faster training convergence without overfitting and achieving better results in all compared metrics even on very small datasets.
Název v anglickém jazyce
Denoise pre-training for segmentation neural networks
Popis výsledku anglicky
This paper proposes a method for pre-training segmentation neural networks on small datasets using unlabelled training data with added noise. The pre-training process helps the network with initial better weights settings for the training itself and also augments the training dataset when dealing with small labelled datasets especially in medical imaging. The experiment comparing results of pre-trained and not pre-trained networks on MRI brain segmentation task has shown that the denoise pre-training helps the network with faster training convergence without overfitting and achieving better results in all compared metrics even on very small datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th Conference STUDENT EEICT 2019
ISBN
978-80-214-5735-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
739-744
Název nakladatele
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
25. 4. 2019
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—