Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Univerzální nástroj pro regresi a segmentaci obrazů pomocí hlubokého učení

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU133290" target="_blank" >RIV/00216305:26220/19:PU133290 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    čeština

  • Název v původním jazyce

    Univerzální nástroj pro regresi a segmentaci obrazů pomocí hlubokého učení

  • Popis výsledku v původním jazyce

    Hluboké učení je dnes velmi účinnou a univerzální metodou pro zpracování obrazu. Tato práce zabývá popisem metody schopné naučit se vytvořit z jednoho obrazu obraz jiný, na základě trénovacích dat. Metoda využívá hlubokého učení, konkrétně konvoluční neuronovou síť typu U-Net, kterou lze využít pro segmentaci obrazu a také pro regresi obrazu nového, kde se liší pouze změnou výstupní vrstvy. Funkčnost a univerzálnost metody je potvrzena na několika ukázkových experimentech pro odstranění šumu, segmentaci a regresi fluorescenčního barvení buněk. Na základě metody byl vytvořen a zkompilován univerzální nástroj, ovládatelný i laikem, schopný natrénovat neuronovou síť pro daný problém a tu následně využít pro predikci nových dat.

  • Název v anglickém jazyce

    Univerzální nástroj pro regresi a segmentaci obrazů pomocí hlubokého učení

  • Popis výsledku anglicky

    Hluboké učení je dnes velmi účinnou a univerzální metodou pro zpracování obrazu. Tato práce zabývá popisem metody schopné naučit se vytvořit z jednoho obrazu obraz jiný, na základě trénovacích dat. Metoda využívá hlubokého učení, konkrétně konvoluční neuronovou síť typu U-Net, kterou lze využít pro segmentaci obrazu a také pro regresi obrazu nového, kde se liší pouze změnou výstupní vrstvy. Funkčnost a univerzálnost metody je potvrzena na několika ukázkových experimentech pro odstranění šumu, segmentaci a regresi fluorescenčního barvení buněk. Na základě metody byl vytvořen a zkompilován univerzální nástroj, ovládatelný i laikem, schopný natrénovat neuronovou síť pro daný problém a tu následně využít pro predikci nových dat.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Trendy v biomedicínskom inžinierstve 2019

  • ISBN

    978-80-554-1587-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-5

  • Název nakladatele

    Žilinská univerzita

  • Místo vydání

    Terchová, Slovensko

  • Místo konání akce

    Terchová, Slovensko

  • Datum konání akce

    11. 9. 2019

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku