Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134777" target="_blank" >RIV/00216305:26220/19:PU134777 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10115-019-01424-4" target="_blank" >https://link.springer.com/article/10.1007/s10115-019-01424-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10115-019-01424-4" target="_blank" >10.1007/s10115-019-01424-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds
Popis výsledku v původním jazyce
Outsourcing data storage and computation to the cloud is appealing due to the cost savings it entails. However, when the data to be outsourced contain private information, appropriate protection mechanisms should be implemented by the data controller. Data splitting, which consists of fragmenting the data and storing them in separate clouds for the sake of privacy preservation, is an interesting alternative to encryption in terms of flexibility and efficiency. However, multivariate analyses on data split among various clouds are challenging, and they are even harder when data are nominal categorical (i.e., textual, non-ordinal), because the standard arithmetic operators cannot be used. In this article, we tackle the problem of outsourcing multivariate analyses on nominal data split over several honest-but-curious clouds. Specifically, we propose several secure protocols to outsource to multiple clouds the computation of a variety of multivariate analyses on nominal categorical data (frequency-based and semantic-based). Our protocols have been designed to outsource as much workload as possible to the clouds, in order to retain the cost-saving benefits of cloud computing while ensuring that the outsourced stay split and hence privacy-protected versus the clouds. The experiments we report on the Amazon cloud service show that by using our protocols the controller can save nearly all the runtime because it can integrate partial results received from the clouds with very little computation.
Název v anglickém jazyce
Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds
Popis výsledku anglicky
Outsourcing data storage and computation to the cloud is appealing due to the cost savings it entails. However, when the data to be outsourced contain private information, appropriate protection mechanisms should be implemented by the data controller. Data splitting, which consists of fragmenting the data and storing them in separate clouds for the sake of privacy preservation, is an interesting alternative to encryption in terms of flexibility and efficiency. However, multivariate analyses on data split among various clouds are challenging, and they are even harder when data are nominal categorical (i.e., textual, non-ordinal), because the standard arithmetic operators cannot be used. In this article, we tackle the problem of outsourcing multivariate analyses on nominal data split over several honest-but-curious clouds. Specifically, we propose several secure protocols to outsource to multiple clouds the computation of a variety of multivariate analyses on nominal categorical data (frequency-based and semantic-based). Our protocols have been designed to outsource as much workload as possible to the clouds, in order to retain the cost-saving benefits of cloud computing while ensuring that the outsourced stay split and hence privacy-protected versus the clouds. The experiments we report on the Amazon cloud service show that by using our protocols the controller can save nearly all the runtime because it can integrate partial results received from the clouds with very little computation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge and Information Systems
ISSN
0219-1377
e-ISSN
0219-3116
Svazek periodika
-
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
2301-2326
Kód UT WoS článku
000530839300008
EID výsledku v databázi Scopus
2-s2.0-85075260823