Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134777" target="_blank" >RIV/00216305:26220/19:PU134777 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10115-019-01424-4" target="_blank" >https://link.springer.com/article/10.1007/s10115-019-01424-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10115-019-01424-4" target="_blank" >10.1007/s10115-019-01424-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds

  • Popis výsledku v původním jazyce

    Outsourcing data storage and computation to the cloud is appealing due to the cost savings it entails. However, when the data to be outsourced contain private information, appropriate protection mechanisms should be implemented by the data controller. Data splitting, which consists of fragmenting the data and storing them in separate clouds for the sake of privacy preservation, is an interesting alternative to encryption in terms of flexibility and efficiency. However, multivariate analyses on data split among various clouds are challenging, and they are even harder when data are nominal categorical (i.e., textual, non-ordinal), because the standard arithmetic operators cannot be used. In this article, we tackle the problem of outsourcing multivariate analyses on nominal data split over several honest-but-curious clouds. Specifically, we propose several secure protocols to outsource to multiple clouds the computation of a variety of multivariate analyses on nominal categorical data (frequency-based and semantic-based). Our protocols have been designed to outsource as much workload as possible to the clouds, in order to retain the cost-saving benefits of cloud computing while ensuring that the outsourced stay split and hence privacy-protected versus the clouds. The experiments we report on the Amazon cloud service show that by using our protocols the controller can save nearly all the runtime because it can integrate partial results received from the clouds with very little computation.

  • Název v anglickém jazyce

    Outsourcing analyses on privacy-protected multivariate categorical data stored in untrusted clouds

  • Popis výsledku anglicky

    Outsourcing data storage and computation to the cloud is appealing due to the cost savings it entails. However, when the data to be outsourced contain private information, appropriate protection mechanisms should be implemented by the data controller. Data splitting, which consists of fragmenting the data and storing them in separate clouds for the sake of privacy preservation, is an interesting alternative to encryption in terms of flexibility and efficiency. However, multivariate analyses on data split among various clouds are challenging, and they are even harder when data are nominal categorical (i.e., textual, non-ordinal), because the standard arithmetic operators cannot be used. In this article, we tackle the problem of outsourcing multivariate analyses on nominal data split over several honest-but-curious clouds. Specifically, we propose several secure protocols to outsource to multiple clouds the computation of a variety of multivariate analyses on nominal categorical data (frequency-based and semantic-based). Our protocols have been designed to outsource as much workload as possible to the clouds, in order to retain the cost-saving benefits of cloud computing while ensuring that the outsourced stay split and hence privacy-protected versus the clouds. The experiments we report on the Amazon cloud service show that by using our protocols the controller can save nearly all the runtime because it can integrate partial results received from the clouds with very little computation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge and Information Systems

  • ISSN

    0219-1377

  • e-ISSN

    0219-3116

  • Svazek periodika

    -

  • Číslo periodika v rámci svazku

    -

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    26

  • Strana od-do

    2301-2326

  • Kód UT WoS článku

    000530839300008

  • EID výsledku v databázi Scopus

    2-s2.0-85075260823