Manifold regularized multiple kernel learning with Hellinger distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134891" target="_blank" >RIV/00216305:26220/19:PU134891 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10586-018-2106-2" target="_blank" >https://link.springer.com/article/10.1007/s10586-018-2106-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10586-018-2106-2" target="_blank" >10.1007/s10586-018-2106-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Manifold regularized multiple kernel learning with Hellinger distance
Popis výsledku v původním jazyce
The aim of this paper is to solve the problem of unsupervised manifold regularization being used under supervised classification circumstance. This paper not only considers that the manifold information of data can provide useful information but also proposes a supervised method to compute the Laplacian graph by using the label information and the Hellinger distance for a comprehensive evaluation of the similarity of data samples. Meanwhile, multi-source or complex data is increasing nowadays. It is desirable to learn from several kernels that are adaptable and flexible to deal with this type of data. Therefore, our classifier is based on multiple kernel learning, and the proposed approach to supervised classification is a multiple kernel model with manifold regularization to incorporate intrinsic geometrical information. Finally, a classifier that minimizes the testing error and considers the geometrical structure of data is put forward. The results of experiments with other methods show the effectiveness of the proposed model and computing the inner potential geometrical information is useful for classification.
Název v anglickém jazyce
Manifold regularized multiple kernel learning with Hellinger distance
Popis výsledku anglicky
The aim of this paper is to solve the problem of unsupervised manifold regularization being used under supervised classification circumstance. This paper not only considers that the manifold information of data can provide useful information but also proposes a supervised method to compute the Laplacian graph by using the label information and the Hellinger distance for a comprehensive evaluation of the similarity of data samples. Meanwhile, multi-source or complex data is increasing nowadays. It is desirable to learn from several kernels that are adaptable and flexible to deal with this type of data. Therefore, our classifier is based on multiple kernel learning, and the proposed approach to supervised classification is a multiple kernel model with manifold regularization to incorporate intrinsic geometrical information. Finally, a classifier that minimizes the testing error and considers the geometrical structure of data is put forward. The results of experiments with other methods show the effectiveness of the proposed model and computing the inner potential geometrical information is useful for classification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cluster Computing-The Journal of Networks Software Tools and Applications
ISSN
1386-7857
e-ISSN
1573-7543
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
13843-13851
Kód UT WoS článku
000501745700079
EID výsledku v databázi Scopus
—