Optimal Face Templates - The Next Step in Surveillance Face Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU132729" target="_blank" >RIV/00216305:26220/20:PU132729 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10044-019-00842-y" target="_blank" >https://link.springer.com/article/10.1007/s10044-019-00842-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10044-019-00842-y" target="_blank" >10.1007/s10044-019-00842-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Face Templates - The Next Step in Surveillance Face Recognition
Popis výsledku v původním jazyce
The paper deals with surveillance face recognition in security applications such as surveillance camera systems or access control systems. Presented research is focused on enhancing recognition performance, reducing classification time and memory requirements. We aim to make it feasible to implement face recognition in end devices such as cameras, identification terminals or popular IoT devices. Therefore we utilize algorithms that require low computational power and optimize them in order to reach higher recognition rates. We present a novel higher quantile method that enhances recognition performance via creation of robust and representative face templates for nearest neighbor classifier. Templates computed by the higher quantile method are determined by tolerance intervals which handle feature variability caused by face pose, expression, illumination and possible low image quality. The recognition performance evaluation has been conducted on images captured by surveillance camera system that are contained in unique IFaViD dataset. The IFaViD is the only one dataset captured by real surveillance camera system containing complex scenarios. The results show that the higher quantile method outperforms the contemporary approaches by 4% respectively 10% depending on the IFaViD's test subset.
Název v anglickém jazyce
Optimal Face Templates - The Next Step in Surveillance Face Recognition
Popis výsledku anglicky
The paper deals with surveillance face recognition in security applications such as surveillance camera systems or access control systems. Presented research is focused on enhancing recognition performance, reducing classification time and memory requirements. We aim to make it feasible to implement face recognition in end devices such as cameras, identification terminals or popular IoT devices. Therefore we utilize algorithms that require low computational power and optimize them in order to reach higher recognition rates. We present a novel higher quantile method that enhances recognition performance via creation of robust and representative face templates for nearest neighbor classifier. Templates computed by the higher quantile method are determined by tolerance intervals which handle feature variability caused by face pose, expression, illumination and possible low image quality. The recognition performance evaluation has been conducted on images captured by surveillance camera system that are contained in unique IFaViD dataset. The IFaViD is the only one dataset captured by real surveillance camera system containing complex scenarios. The results show that the higher quantile method outperforms the contemporary approaches by 4% respectively 10% depending on the IFaViD's test subset.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PATTERN ANALYSIS AND APPLICATIONS
ISSN
1433-7541
e-ISSN
1433-755X
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1021-1032
Kód UT WoS článku
000528015400032
EID výsledku v databázi Scopus
2-s2.0-85070091563