Truth Identification from EEG Signal by using Convolution neural network: Lie Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136960" target="_blank" >RIV/00216305:26220/20:PU136960 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TSP49548.2020.9163497" target="_blank" >http://dx.doi.org/10.1109/TSP49548.2020.9163497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP49548.2020.9163497" target="_blank" >10.1109/TSP49548.2020.9163497</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Truth Identification from EEG Signal by using Convolution neural network: Lie Detection
Popis výsledku v původním jazyce
Identification of statement is truth or lie is a major problem. It has various applications for safety and clime control. Traditionally physiological activities are monitored during the question-answer round and compare to a normal level. However, because the subject can control his/her physiological reactions, therefore, to overcome these brain signals are used to identify the truth. Brain signal is the first to respond to any sensory impulses which can be used to identify the person is telling the truth or lying. The EEG signals describe the brain signal activity of a person. In this paper, a deep learning method has been used for automatic truth identification from EEG signals by using a convolution neural network. The proposed model has taken 14 channel EEG signals as input to convolution neural network for classification of the signal into the truth or lies statements. The proposed method has achieved up to 84.44% accuracy to identify a person is telling a truth or lie. The proposed method is non-invasive, efficient and robust and has low time complexity making it suitable for realtime applications.
Název v anglickém jazyce
Truth Identification from EEG Signal by using Convolution neural network: Lie Detection
Popis výsledku anglicky
Identification of statement is truth or lie is a major problem. It has various applications for safety and clime control. Traditionally physiological activities are monitored during the question-answer round and compare to a normal level. However, because the subject can control his/her physiological reactions, therefore, to overcome these brain signals are used to identify the truth. Brain signal is the first to respond to any sensory impulses which can be used to identify the person is telling the truth or lying. The EEG signals describe the brain signal activity of a person. In this paper, a deep learning method has been used for automatic truth identification from EEG signals by using a convolution neural network. The proposed model has taken 14 channel EEG signals as input to convolution neural network for classification of the signal into the truth or lies statements. The proposed method has achieved up to 84.44% accuracy to identify a person is telling a truth or lie. The proposed method is non-invasive, efficient and robust and has low time complexity making it suitable for realtime applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 43rd International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-7281-6376-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
550-553
Název nakladatele
IEEE
Místo vydání
Milan, Italy
Místo konání akce
Milan, Italy
Datum konání akce
7. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—