Time-Dependent Propagation Analysis and Modeling of LPWAN Technologies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137835" target="_blank" >RIV/00216305:26220/20:PU137835 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9367525" target="_blank" >https://ieeexplore.ieee.org/document/9367525</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/GCWkshps50303.2020.9367525" target="_blank" >10.1109/GCWkshps50303.2020.9367525</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-Dependent Propagation Analysis and Modeling of LPWAN Technologies
Popis výsledku v původním jazyce
The modern low-power wide area network (LPWAN) technologies have been introduced as connectivity enablers with low complexity, extended communication range, and excellent signal penetration. On the other hand, they suffer from a substantial delay and low packet-delivery guarantees. As a result, numerous novel applications entering the market suffer from insufficient performance. To mitigate this, further optimization and adaptation of the LPWAN technologies to the needs of these new applications requires an in-depth understanding of the propagation environment dynamics. Motivated by that, in this paper, we thoroughly investigate time-dependent statistical characteristics of the reference signal receive power (RSRP) dynamics of Narrowband IoT (NB-IoT) technology. We demonstrate that even for a stationary user equipment (UE), RSRP is subject to drastic variations that are characterized by exponentially decaying autocorrelation function (ACF). We then demonstrate that first- and second-order statistical properties of the RSRP dynamics can be closely captured using the doubly-stochastic Markov model that retains the tractability of the conventional Markov models. The reported models are expected to serve as a building block for analytical and simulation-based system-level studies and optimization of LPWAN technologies.
Název v anglickém jazyce
Time-Dependent Propagation Analysis and Modeling of LPWAN Technologies
Popis výsledku anglicky
The modern low-power wide area network (LPWAN) technologies have been introduced as connectivity enablers with low complexity, extended communication range, and excellent signal penetration. On the other hand, they suffer from a substantial delay and low packet-delivery guarantees. As a result, numerous novel applications entering the market suffer from insufficient performance. To mitigate this, further optimization and adaptation of the LPWAN technologies to the needs of these new applications requires an in-depth understanding of the propagation environment dynamics. Motivated by that, in this paper, we thoroughly investigate time-dependent statistical characteristics of the reference signal receive power (RSRP) dynamics of Narrowband IoT (NB-IoT) technology. We demonstrate that even for a stationary user equipment (UE), RSRP is subject to drastic variations that are characterized by exponentially decaying autocorrelation function (ACF). We then demonstrate that first- and second-order statistical properties of the RSRP dynamics can be closely captured using the doubly-stochastic Markov model that retains the tractability of the conventional Markov models. The reported models are expected to serve as a building block for analytical and simulation-based system-level studies and optimization of LPWAN technologies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40371" target="_blank" >FV40371: Pokročilý systém pro vnitřní 2D a 3D lokalizaci v reálném čase pro automatizaci, vizualizaci a řízení výrobních procesů v Průmyslu 4.0 – řešení na bázi MEMS a PDoA/AoA hybridních metod</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE Global Communications Conference
ISBN
978-1-7281-7307-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Taipei
Datum konání akce
7. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000662202100129