Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The assignment success for 22 horse breeds registered in the Czech Republic: The machine learning perspective

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU138702" target="_blank" >RIV/00216305:26220/21:PU138702 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/21:43919188

  • Výsledek na webu

    <a href="https://www.agriculturejournals.cz/web/cjas.htm?type=article&id=120_2020-CJAS" target="_blank" >https://www.agriculturejournals.cz/web/cjas.htm?type=article&id=120_2020-CJAS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17221/120/2020-CJAS" target="_blank" >10.17221/120/2020-CJAS</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The assignment success for 22 horse breeds registered in the Czech Republic: The machine learning perspective

  • Popis výsledku v původním jazyce

    The paper demonstrates the dependability of assignment testing in the identification of an appropriate breed to monitor comprehensive genetic information from molecular markers to analyse the collection of real population data covering 22 horse breeds registered in the Czech Republic, including native breeds and genetic resources. If 17 microsatellites are used, the mean number of alleles per locus corresponds to 10.4. The count of alleles at the individual loci ranges between five (HTG07) and 17 (ASB17). The loci ASB02, ASB23, HMS03, HTG10, and VHL20 exhibit the highest gene diversity and observed heterozygosity (both above 80%), with the mean value of 0.77 and 0.73, respectively. The moderate total inbreeding coefficient (5.2%) is estimated across all the loci and breeds. The levels of apparent breed differentiation span from zero between the Czech Warmblood and Slovak Warmblood to 0.15 between the Shetland Pony and Standardbred. The phylogenetic breed relationships are revealed via the NeighbourNet dendrogram constructed from Reynolds’ genetic distances, which clearly separate the Coldblood draught, Hot/Warmblood, and Pony horses. Our results reveal that the Bayesian approach (the Rannala and Mountain technique) provides the most intensive prediction power (83.6%) out of the GeneClass tools and that the Bayes Net algorithm exhibits the best efficiency (78.4%) from the WEKA machine learning workbench options, considering the use of the five-fold cross validation technique. The algorithms could be trained on large real reference data sets, and thus there appears another viable perspective for machine learning in horse ancestry testing. In this context, it is also important to stress the fact that innovated computational tools will potentially lead towards structuring a novel web server to allow the identification of horse breeds.

  • Název v anglickém jazyce

    The assignment success for 22 horse breeds registered in the Czech Republic: The machine learning perspective

  • Popis výsledku anglicky

    The paper demonstrates the dependability of assignment testing in the identification of an appropriate breed to monitor comprehensive genetic information from molecular markers to analyse the collection of real population data covering 22 horse breeds registered in the Czech Republic, including native breeds and genetic resources. If 17 microsatellites are used, the mean number of alleles per locus corresponds to 10.4. The count of alleles at the individual loci ranges between five (HTG07) and 17 (ASB17). The loci ASB02, ASB23, HMS03, HTG10, and VHL20 exhibit the highest gene diversity and observed heterozygosity (both above 80%), with the mean value of 0.77 and 0.73, respectively. The moderate total inbreeding coefficient (5.2%) is estimated across all the loci and breeds. The levels of apparent breed differentiation span from zero between the Czech Warmblood and Slovak Warmblood to 0.15 between the Shetland Pony and Standardbred. The phylogenetic breed relationships are revealed via the NeighbourNet dendrogram constructed from Reynolds’ genetic distances, which clearly separate the Coldblood draught, Hot/Warmblood, and Pony horses. Our results reveal that the Bayesian approach (the Rannala and Mountain technique) provides the most intensive prediction power (83.6%) out of the GeneClass tools and that the Bayes Net algorithm exhibits the best efficiency (78.4%) from the WEKA machine learning workbench options, considering the use of the five-fold cross validation technique. The algorithms could be trained on large real reference data sets, and thus there appears another viable perspective for machine learning in horse ancestry testing. In this context, it is also important to stress the fact that innovated computational tools will potentially lead towards structuring a novel web server to allow the identification of horse breeds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10603 - Genetics and heredity (medical genetics to be 3)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QH92277" target="_blank" >QH92277: Genetická diverzita a její uchování ve vybraných populacích koní v ČR</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CZECH JOURNAL OF ANIMAL SCIENCE

  • ISSN

    1212-1819

  • e-ISSN

    1805-9309

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000613949300001

  • EID výsledku v databázi Scopus