Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140717" target="_blank" >RIV/00216305:26220/21:PU140717 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/21:00124305
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fneur.2021.644874/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fneur.2021.644874/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fneur.2021.644874" target="_blank" >10.3389/fneur.2021.644874</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?
Popis výsledku v původním jazyce
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ4 band and low β1 band) demonstrated significant negative linear relationship (pFWE < 0.05) to the frequent stimulus and three patterns (two low δ2 and δ3 bands, and narrow θ1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ4, β1, and θ1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI asso
Název v anglickém jazyce
Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?
Popis výsledku anglicky
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ4 band and low β1 band) demonstrated significant negative linear relationship (pFWE < 0.05) to the frequent stimulus and three patterns (two low δ2 and δ3 bands, and narrow θ1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ4, β1, and θ1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI asso
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Neurology
ISSN
1664-2295
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000648447500001
EID výsledku v databázi Scopus
2-s2.0-85105577749