Detection of road surface defects from data acquired by a laser scanner
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140776" target="_blank" >RIV/00216305:26220/21:PU140776 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_2.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_2.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of road surface defects from data acquired by a laser scanner
Popis výsledku v původním jazyce
Research in the field of automatic detection of road surface defects has been relatively widespread in recent years. Most of the existing works solve this issue by processing the image acquired by camera technology. The contribution of this study is the proposal of the LRS-CNN algorithm for the detection of defects on road surfaces based on their laser scans. The advantage of LRS-CNN is the ability to detect so-called microcracks, which can not be recognized from camera recordings. We have also found that transfer learning methods are not suitable for the use of road defect detection from their laser scans. Our LRS-CNN algorithm has been trained on unique nonpublic data and is able to achieve up to 99.33 % of success depending on the type of task.
Název v anglickém jazyce
Detection of road surface defects from data acquired by a laser scanner
Popis výsledku anglicky
Research in the field of automatic detection of road surface defects has been relatively widespread in recent years. Most of the existing works solve this issue by processing the image acquired by camera technology. The contribution of this study is the proposal of the LRS-CNN algorithm for the detection of defects on road surfaces based on their laser scans. The advantage of LRS-CNN is the ability to detect so-called microcracks, which can not be recognized from camera recordings. We have also found that transfer learning methods are not suitable for the use of road defect detection from their laser scans. Our LRS-CNN algorithm has been trained on unique nonpublic data and is able to achieve up to 99.33 % of success depending on the type of task.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 27th Conference STUDENT EEICT 2021
ISBN
978-80-214-5943-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
275-279
Název nakladatele
Brno Univeristy of Technology, Faculty of Electrical Engineering and Communication
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno
Datum konání akce
27. 4. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—