MATLAB IMPLEMENTATION OF MULTILAYER PERCEPTRON FOR BEARING FAULTS CLASSIFICATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140813" target="_blank" >RIV/00216305:26220/21:PU140813 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MATLAB IMPLEMENTATION OF MULTILAYER PERCEPTRON FOR BEARING FAULTS CLASSIFICATION
Popis výsledku v původním jazyce
This paper deals with implementation of multilayer perceptron neural network (NN) for bearing faults classification. Neural network has been created from scratch as an M-script with back propagation learning algorithm also, but without using advanced MATLAB packages. Public available bearing dataset from CaseWestern Reserve University has been used for both training and testing phase, as well as for the final classification process. Problem with sparse input data for training the network has also been addressed. This relatively simple and small neural network is capable to classify the failures of a bearing with very low error rate.
Název v anglickém jazyce
MATLAB IMPLEMENTATION OF MULTILAYER PERCEPTRON FOR BEARING FAULTS CLASSIFICATION
Popis výsledku anglicky
This paper deals with implementation of multilayer perceptron neural network (NN) for bearing faults classification. Neural network has been created from scratch as an M-script with back propagation learning algorithm also, but without using advanced MATLAB packages. Public available bearing dataset from CaseWestern Reserve University has been used for both training and testing phase, as well as for the final classification process. Problem with sparse input data for training the network has also been addressed. This relatively simple and small neural network is capable to classify the failures of a bearing with very low error rate.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 27th Conference STUDENT EEICT 2021
ISBN
978-80-214-5943-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
27. 4. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—