GPON ATTACKS AND ERRORS CLASSIFICATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141219" target="_blank" >RIV/00216305:26220/21:PU141219 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPON ATTACKS AND ERRORS CLASSIFICATION
Popis výsledku v původním jazyce
This paper focuses on various types of attacks and errors in an activation process of Gigabit-capable passive optical networks. The process sends messages via Physical Layer Operation Administration and Maintenance header field inside the transmitted frame. An exemplar network communication is captured by a special hardware-accelerated network interface card capable of processing optical signals from passive optical networks. The captured data is filtered of irrelevant parts and messages and correctly formatted into a suitable shape for a neural network. The filtered data is divided into small sequences called time windows and analyzed using a recurrent neural network-based on Gated recurrent unit cells. A new neural network model is designed to classify sequences into several categories: additional message, missing message, error inside (noisy) message, and message order error. All of these categories represent a certain type of attack or error. The proposed model can distinguish message sequences in
Název v anglickém jazyce
GPON ATTACKS AND ERRORS CLASSIFICATION
Popis výsledku anglicky
This paper focuses on various types of attacks and errors in an activation process of Gigabit-capable passive optical networks. The process sends messages via Physical Layer Operation Administration and Maintenance header field inside the transmitted frame. An exemplar network communication is captured by a special hardware-accelerated network interface card capable of processing optical signals from passive optical networks. The captured data is filtered of irrelevant parts and messages and correctly formatted into a suitable shape for a neural network. The filtered data is divided into small sequences called time windows and analyzed using a recurrent neural network-based on Gated recurrent unit cells. A new neural network model is designed to classify sequences into several categories: additional message, missing message, error inside (noisy) message, and message order error. All of these categories represent a certain type of attack or error. The proposed model can distinguish message sequences in
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192022135" target="_blank" >VI20192022135: Hloubková hardwarová detekce síťového provozu pasivních optických sítí nové generace v kritických infrastrukturách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů