Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142097" target="_blank" >RIV/00216305:26220/21:PU142097 - isvavai.cz</a>
Výsledek na webu
<a href="https://eejournal.ktu.lt/index.php/elt/article/view/28877" target="_blank" >https://eejournal.ktu.lt/index.php/elt/article/view/28877</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5755/j02.eie.28877" target="_blank" >10.5755/j02.eie.28877</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space
Popis výsledku v původním jazyce
This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection.
Název v anglickém jazyce
Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space
Popis výsledku anglicky
This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Elektronika Ir Elektrotechnika
ISSN
1392-1215
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
7
Strana od-do
62-68
Kód UT WoS článku
000689125400008
EID výsledku v databázi Scopus
2-s2.0-85113600635