Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142145" target="_blank" >RIV/00216305:26220/21:PU142145 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pdf.sciencedirectassets.com/280646/1-s2.0-S2152265021X00122/1-s2.0-S2152265021021522/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEL7%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDk0thmxpWiSPx1vZ0SaN1CsK30BU9FiR2s3C7f2UEjOQIhAJOBJqmwfLN" target="_blank" >https://pdf.sciencedirectassets.com/280646/1-s2.0-S2152265021X00122/1-s2.0-S2152265021021522/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEL7%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDk0thmxpWiSPx1vZ0SaN1CsK30BU9FiR2s3C7f2UEjOQIhAJOBJqmwfLN</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration

  • Popis výsledku v původním jazyce

    Background Advances in deep learning have made automatic biomedical image segmentation feasible. Additionally, radiomics analysis now allows computer based, in-depth tissue analysis from medical images. The goal of this work was to establish a full-automatic framework combining automatic pelvic bone marrow (BM) segmentation and radiomics analysis of the pelvic BM to predict BM plasma cell infiltration (PCI) directly and automatically from whole-body magnetic resonance imaging (wb-MRI). Methods A total of 541 MRIs acquired at 5 different MRI scanners from 270 patients with all stages of monoclonal plasma cell disorders were included. One-hundred fifty-eight patients who had received MRI at the standard clinical 1.5T MRI scanner and had information on PCI from concomitant BM biopsy at the iliac crest available were split by date into a training set (n=116) for both, nnU-Net and radiomics model, and an independent test set for the framework (n=42). All MRIs without biopsy data were used for training of t

  • Název v anglickém jazyce

    Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration

  • Popis výsledku anglicky

    Background Advances in deep learning have made automatic biomedical image segmentation feasible. Additionally, radiomics analysis now allows computer based, in-depth tissue analysis from medical images. The goal of this work was to establish a full-automatic framework combining automatic pelvic bone marrow (BM) segmentation and radiomics analysis of the pelvic BM to predict BM plasma cell infiltration (PCI) directly and automatically from whole-body magnetic resonance imaging (wb-MRI). Methods A total of 541 MRIs acquired at 5 different MRI scanners from 270 patients with all stages of monoclonal plasma cell disorders were included. One-hundred fifty-eight patients who had received MRI at the standard clinical 1.5T MRI scanner and had information on PCI from concomitant BM biopsy at the iliac crest available were split by date into a training set (n=116) for both, nnU-Net and radiomics model, and an independent test set for the framework (n=42). All MRIs without biopsy data were used for training of t

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů