Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142145" target="_blank" >RIV/00216305:26220/21:PU142145 - isvavai.cz</a>
Výsledek na webu
<a href="https://pdf.sciencedirectassets.com/280646/1-s2.0-S2152265021X00122/1-s2.0-S2152265021021522/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEL7%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDk0thmxpWiSPx1vZ0SaN1CsK30BU9FiR2s3C7f2UEjOQIhAJOBJqmwfLN" target="_blank" >https://pdf.sciencedirectassets.com/280646/1-s2.0-S2152265021X00122/1-s2.0-S2152265021021522/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEL7%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDk0thmxpWiSPx1vZ0SaN1CsK30BU9FiR2s3C7f2UEjOQIhAJOBJqmwfLN</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration
Popis výsledku v původním jazyce
Background Advances in deep learning have made automatic biomedical image segmentation feasible. Additionally, radiomics analysis now allows computer based, in-depth tissue analysis from medical images. The goal of this work was to establish a full-automatic framework combining automatic pelvic bone marrow (BM) segmentation and radiomics analysis of the pelvic BM to predict BM plasma cell infiltration (PCI) directly and automatically from whole-body magnetic resonance imaging (wb-MRI). Methods A total of 541 MRIs acquired at 5 different MRI scanners from 270 patients with all stages of monoclonal plasma cell disorders were included. One-hundred fifty-eight patients who had received MRI at the standard clinical 1.5T MRI scanner and had information on PCI from concomitant BM biopsy at the iliac crest available were split by date into a training set (n=116) for both, nnU-Net and radiomics model, and an independent test set for the framework (n=42). All MRIs without biopsy data were used for training of t
Název v anglickém jazyce
Automatic analysis of magnetic resonance imaging in multiple myeloma patients: deep-learning based pelvic bone marrow segmentation and radiomics analysis for prediction of plasma cell infiltration
Popis výsledku anglicky
Background Advances in deep learning have made automatic biomedical image segmentation feasible. Additionally, radiomics analysis now allows computer based, in-depth tissue analysis from medical images. The goal of this work was to establish a full-automatic framework combining automatic pelvic bone marrow (BM) segmentation and radiomics analysis of the pelvic BM to predict BM plasma cell infiltration (PCI) directly and automatically from whole-body magnetic resonance imaging (wb-MRI). Methods A total of 541 MRIs acquired at 5 different MRI scanners from 270 patients with all stages of monoclonal plasma cell disorders were included. One-hundred fifty-eight patients who had received MRI at the standard clinical 1.5T MRI scanner and had information on PCI from concomitant BM biopsy at the iliac crest available were split by date into a training set (n=116) for both, nnU-Net and radiomics model, and an independent test set for the framework (n=42). All MRIs without biopsy data were used for training of t
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů