Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142182" target="_blank" >RIV/00216305:26220/21:PU142182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cinc.org/archives/2021/pdf/CinC2021-179.pdf" target="_blank" >https://www.cinc.org/archives/2021/pdf/CinC2021-179.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2021.179" target="_blank" >10.22489/CinC.2021.179</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data
Popis výsledku v původním jazyce
Detection of cardiac arrhythmias is still an ongoing challenge. Here we focus on premature ventricular contraction (PVC) and premature atrial contraction (PAC) and introduce a deep-learning-based method for PVC/PAC localization in ECG. Our method is based on involving the time series with non-zero values corresponding to the ground truth PVC/PAC positions into the training process. To improve the efficiency of deep model training, the transition between the non-zero and zero areas in the train output time series was smoothed by introducing a Gaussian function. When applied to the new ECGs, the output signal (time series including Gaussians) is processed by a robust peak detector with Bayesian optimization of threshold, minimal distance and peak prominence. Positions of the detected peaks correspond to the desired PVC/PAC positions. The proposed method was evaluated on China Physiological Signal Challenge 2018 (CPSC2018) using own-created ground truth positions of PVC/PAC. The proposed method reached F1 score 0.923 and 0.688 for PAC and PVC, respectively, which is better than our previous results obtained via multiple instance learning-based method.
Název v anglickém jazyce
Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data
Popis výsledku anglicky
Detection of cardiac arrhythmias is still an ongoing challenge. Here we focus on premature ventricular contraction (PVC) and premature atrial contraction (PAC) and introduce a deep-learning-based method for PVC/PAC localization in ECG. Our method is based on involving the time series with non-zero values corresponding to the ground truth PVC/PAC positions into the training process. To improve the efficiency of deep model training, the transition between the non-zero and zero areas in the train output time series was smoothed by introducing a Gaussian function. When applied to the new ECGs, the output signal (time series including Gaussians) is processed by a robust peak detector with Bayesian optimization of threshold, minimal distance and peak prominence. Positions of the detected peaks correspond to the desired PVC/PAC positions. The proposed method was evaluated on China Physiological Signal Challenge 2018 (CPSC2018) using own-created ground truth positions of PVC/PAC. The proposed method reached F1 score 0.923 and 0.688 for PAC and PVC, respectively, which is better than our previous results obtained via multiple instance learning-based method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2021
ISBN
—
ISSN
2325-887X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Computing in Cardiology 2021
Místo vydání
neuveden
Místo konání akce
Brno
Datum konání akce
12. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—