Corrosion Resistance of Ferritic Stainless Steel X12Cr13 After Application of Low-Temperature and High-Temperature Plasma Nitriding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU143180" target="_blank" >RIV/00216305:26220/21:PU143180 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/21:00556900
Výsledek na webu
<a href="https://doi.org/10.21062/mft.2021.013" target="_blank" >https://doi.org/10.21062/mft.2021.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21062/mft.2021.013" target="_blank" >10.21062/mft.2021.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Corrosion Resistance of Ferritic Stainless Steel X12Cr13 After Application of Low-Temperature and High-Temperature Plasma Nitriding
Popis výsledku v původním jazyce
The impact of plasma nitriding process on corrosion resistance of ferrettic stainless steel (FSS) was evaluated in this study. The FSS X12Cr13 (AISI 410) was subjected to low-temperature plasma nitriding (LTPN) treatment at a temperature of 400°C in 3H2:1N2 (l/h) and in 1H2:3N2 (l/h) reverse working atmosphere (LTPN-R) and to high-temperature plasma nitriding (HTPN) treatment at 550 °C for 15 h. The microstructure and microhardness of the untreated and nitrided stainless steel were evaluated. The corrosion properties of the untreated and plasma nitrided steel samples were evaluated using the anodic potentiodynamic polarization tests in neutral 2.5% NaCl deaerated solution. The phase analysis showed that LTPN and LTPN-R treatment on the AISI 410 steel led to the formation of αN layer (nitrogen expanded ferrite) accompanied by Fe3C and Fe4N iron nitrides and CrN. The HTPN technique led additionally to the formation of an increased volume of Cr4N4 chromium nitrides and Cr15Fe7C6 chromium iron carbide. The plasma nitriding process significantly increased the microhardness of the ferritic stainless steel. The pitting was evaluated, and the pitting coefficient was calculated. The electrochemical corrosion tests showed the best corrosion resistance of the untreated X12Cr13 stainless steel, only slightly increased corrosion rates of LTPN and LTPN-R techniques, and extreme corrosion rates after application of the HTPN technique, causing Cr depletion and thereby suppressing the ability to passivation.
Název v anglickém jazyce
Corrosion Resistance of Ferritic Stainless Steel X12Cr13 After Application of Low-Temperature and High-Temperature Plasma Nitriding
Popis výsledku anglicky
The impact of plasma nitriding process on corrosion resistance of ferrettic stainless steel (FSS) was evaluated in this study. The FSS X12Cr13 (AISI 410) was subjected to low-temperature plasma nitriding (LTPN) treatment at a temperature of 400°C in 3H2:1N2 (l/h) and in 1H2:3N2 (l/h) reverse working atmosphere (LTPN-R) and to high-temperature plasma nitriding (HTPN) treatment at 550 °C for 15 h. The microstructure and microhardness of the untreated and nitrided stainless steel were evaluated. The corrosion properties of the untreated and plasma nitrided steel samples were evaluated using the anodic potentiodynamic polarization tests in neutral 2.5% NaCl deaerated solution. The phase analysis showed that LTPN and LTPN-R treatment on the AISI 410 steel led to the formation of αN layer (nitrogen expanded ferrite) accompanied by Fe3C and Fe4N iron nitrides and CrN. The HTPN technique led additionally to the formation of an increased volume of Cr4N4 chromium nitrides and Cr15Fe7C6 chromium iron carbide. The plasma nitriding process significantly increased the microhardness of the ferritic stainless steel. The pitting was evaluated, and the pitting coefficient was calculated. The electrochemical corrosion tests showed the best corrosion resistance of the untreated X12Cr13 stainless steel, only slightly increased corrosion rates of LTPN and LTPN-R techniques, and extreme corrosion rates after application of the HTPN technique, causing Cr depletion and thereby suppressing the ability to passivation.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Manufacturing TECHNOLOGY
ISSN
1213-2489
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
98-104
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85102287719