Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

LPWAN Coverage Assessment Planning without Explicit Knowledge of Base Station Locations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU141341" target="_blank" >RIV/00216305:26220/22:PU141341 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9507528" target="_blank" >https://ieeexplore.ieee.org/document/9507528</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JIOT.2021.3102694" target="_blank" >10.1109/JIOT.2021.3102694</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    LPWAN Coverage Assessment Planning without Explicit Knowledge of Base Station Locations

  • Popis výsledku v původním jazyce

    An assessment of radio network coverage, usually in the form of a measurement campaign, is essential for multi-base-station (multi-BS) network deployment and maintenance. It can be conducted by a network operator or its served consumers. However, the number of measurement points and their locations may not be known in advance for an efficient and accurate evaluation. The main goal of this study is to propose a new methodology for understanding the selection of measurement points during coverage and signal quality assessment. It is particularly tailored to multi-BS low-power wide-area network (LPWAN) deployments without explicit knowledge of BS locations. To this aim, we first conduct a large-scale measurement campaign for three popular LPWAN technologies, namely, NB-IoT, Sigfox, and LoRaWAN. Utilizing this baseline data, we develop a procedure for identifying the minimum set of measurement points for the coverage assessment with a given accuracy as well as study which interpolation algorithms produce the lowest approximation error. Our results demonstrate that a random choice of measurement points is on par with their deterministic selection. Out of the candidate interpolation algorithms, Kriging method offers attractive performance in terms of the absolute error for NB-IoT deployments. By contrast, for Sigfox and LoRaWAN infrastructures, less complex techniques, such as Natural-neighbor, Linear interpolation, or Inverse-Distance Weighting, can achieve comparable (and occasionally even better) accuracy levels.

  • Název v anglickém jazyce

    LPWAN Coverage Assessment Planning without Explicit Knowledge of Base Station Locations

  • Popis výsledku anglicky

    An assessment of radio network coverage, usually in the form of a measurement campaign, is essential for multi-base-station (multi-BS) network deployment and maintenance. It can be conducted by a network operator or its served consumers. However, the number of measurement points and their locations may not be known in advance for an efficient and accurate evaluation. The main goal of this study is to propose a new methodology for understanding the selection of measurement points during coverage and signal quality assessment. It is particularly tailored to multi-BS low-power wide-area network (LPWAN) deployments without explicit knowledge of BS locations. To this aim, we first conduct a large-scale measurement campaign for three popular LPWAN technologies, namely, NB-IoT, Sigfox, and LoRaWAN. Utilizing this baseline data, we develop a procedure for identifying the minimum set of measurement points for the coverage assessment with a given accuracy as well as study which interpolation algorithms produce the lowest approximation error. Our results demonstrate that a random choice of measurement points is on par with their deterministic selection. Out of the candidate interpolation algorithms, Kriging method offers attractive performance in terms of the absolute error for NB-IoT deployments. By contrast, for Sigfox and LoRaWAN infrastructures, less complex techniques, such as Natural-neighbor, Linear interpolation, or Inverse-Distance Weighting, can achieve comparable (and occasionally even better) accuracy levels.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Internet of Things Journal

  • ISSN

    2327-4662

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    4031-4050

  • Kód UT WoS článku

    000766683600007

  • EID výsledku v databázi Scopus

    2-s2.0-85112221686