Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using deep learning for gene detection and classification in raw nanopore signals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144361" target="_blank" >RIV/00216305:26220/22:PU144361 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/65269705:_____/22:00076376

  • Výsledek na webu

    <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fmicb.2022.942179" target="_blank" >10.3389/fmicb.2022.942179</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using deep learning for gene detection and classification in raw nanopore signals

  • Popis výsledku v původním jazyce

    Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.

  • Název v anglickém jazyce

    Using deep learning for gene detection and classification in raw nanopore signals

  • Popis výsledku anglicky

    Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Frontiers in Microbiology

  • ISSN

    1664-302X

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    000862142800001

  • EID výsledku v databázi Scopus

    2-s2.0-85139009357