Using deep learning for gene detection and classification in raw nanopore signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144361" target="_blank" >RIV/00216305:26220/22:PU144361 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/22:00076376
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmicb.2022.942179" target="_blank" >10.3389/fmicb.2022.942179</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using deep learning for gene detection and classification in raw nanopore signals
Popis výsledku v původním jazyce
Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.
Název v anglickém jazyce
Using deep learning for gene detection and classification in raw nanopore signals
Popis výsledku anglicky
Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Microbiology
ISSN
1664-302X
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000862142800001
EID výsledku v databázi Scopus
2-s2.0-85139009357