Optimization of wavelet transform in the task of intracardiac ECG segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144637" target="_blank" >RIV/00216305:26220/22:PU144637 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of wavelet transform in the task of intracardiac ECG segmentation
Popis výsledku v původním jazyce
My work deals with the selection of an appropriate wavelet transform setting for feature extraction from intracardiac ECG recordings. The studied signals were obtained during electrophysiological examinations at the Department of Pediatric Medicine, University Hospital Brno. In this paper, several wavelets are tested for feature extraction which is followed by adaptive thresholding to detect atrial activity from the extracted features. The procedure is evaluated using the F-score. Although the presented procedure does not appear to be overall effective for intracardiac signal segmentation, it certainly does not reject the use of wavelet transforms in combination with advanced machine learning, neural network, or deep learning techniques.
Název v anglickém jazyce
Optimization of wavelet transform in the task of intracardiac ECG segmentation
Popis výsledku anglicky
My work deals with the selection of an appropriate wavelet transform setting for feature extraction from intracardiac ECG recordings. The studied signals were obtained during electrophysiological examinations at the Department of Pediatric Medicine, University Hospital Brno. In this paper, several wavelets are tested for feature extraction which is followed by adaptive thresholding to detect atrial activity from the extracted features. The procedure is evaluated using the F-score. Although the presented procedure does not appear to be overall effective for intracardiac signal segmentation, it certainly does not reject the use of wavelet transforms in combination with advanced machine learning, neural network, or deep learning techniques.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů