Unsupervised Time Series Pattern Recognition for Purpose of Electronic Surveillance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144806" target="_blank" >RIV/00216305:26220/22:PU144806 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/23:00558842
Výsledek na webu
<a href="https://mrw2022.org/mikon/" target="_blank" >https://mrw2022.org/mikon/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/MIKON54314.2022.9924999" target="_blank" >10.23919/MIKON54314.2022.9924999</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Time Series Pattern Recognition for Purpose of Electronic Surveillance
Popis výsledku v původním jazyce
Signal classification is one of the main tasks of electronic surveillance. This paper focuses on extracting patterns from time series and testing robustness of pre-trained Neural Network (NN). A dataset of 10 different time series was created and used to train a neural network based on the Time-Series Representation Learning via Temporal and Contextual Contrasting (TS-TCC) model. The logits layer of the NN model was removed from this pre-trained model to obtain the feature vectors. A dataset containing 87 real signals acquired from passive surveillance sensors was passed to the NN to obtain embeddings that represent the features of the signals extracted from the NN. The dataset was then corrupted with missing pulses and spurious pulses and tested on pre-trained NN. This unsupervised learning method was able to recognize 76% of the signals even with 50% of the missing input data. The research showed that an important step to improve NN performance is to choose suitable data scaling method. The best results were achieved using the StandardScaler from scikit-learn preprocessing library.
Název v anglickém jazyce
Unsupervised Time Series Pattern Recognition for Purpose of Electronic Surveillance
Popis výsledku anglicky
Signal classification is one of the main tasks of electronic surveillance. This paper focuses on extracting patterns from time series and testing robustness of pre-trained Neural Network (NN). A dataset of 10 different time series was created and used to train a neural network based on the Time-Series Representation Learning via Temporal and Contextual Contrasting (TS-TCC) model. The logits layer of the NN model was removed from this pre-trained model to obtain the feature vectors. A dataset containing 87 real signals acquired from passive surveillance sensors was passed to the NN to obtain embeddings that represent the features of the signals extracted from the NN. The dataset was then corrupted with missing pulses and spurious pulses and tested on pre-trained NN. This unsupervised learning method was able to recognize 76% of the signals even with 50% of the missing input data. The research showed that an important step to improve NN performance is to choose suitable data scaling method. The best results were achieved using the StandardScaler from scikit-learn preprocessing library.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of MIKON 2022
ISBN
978-83-956020-3-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Polsko
Místo konání akce
Gdansk
Datum konání akce
12. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—