Prodromal Diagnosis of Lewy Body Diseases Based on Actigraphy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144831" target="_blank" >RIV/00216305:26220/22:PU144831 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/22:00134704
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9851316" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9851316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP55681.2022.9851316" target="_blank" >10.1109/TSP55681.2022.9851316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prodromal Diagnosis of Lewy Body Diseases Based on Actigraphy
Popis výsledku v původním jazyce
This paper is devoted to the computerized automated diagnosis of the prodromal state of Lewy body diseases (LBD) based on actigraphy. LBD is a group of neurodegenerative diseases that require early treatment to alleviate the course of the disease and improve the quality of the lives of patients. This work proposes a method of prodromal diagnosis of LBD based on quantitative analysis of actigraphic sleep data. A new method of sleep and wake detection based on the XGBoost classifier and the angle of the z-axis is introduced, which achieves 83% accuracy and surpasses the results of state-of-the-art methods. Furthermore, a method that can distinguish subjects with prodromal LBD (50 subjects with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment) and healthy controls (63 subjects) with 94% accuracy was introduced. The sensitivity of the method of 100% and specificity of 91% was considered sufficient for clinical practice and the proposed methods can help develop decision-making tools that maximize the potential for an early and objective diagnosis of LBD.
Název v anglickém jazyce
Prodromal Diagnosis of Lewy Body Diseases Based on Actigraphy
Popis výsledku anglicky
This paper is devoted to the computerized automated diagnosis of the prodromal state of Lewy body diseases (LBD) based on actigraphy. LBD is a group of neurodegenerative diseases that require early treatment to alleviate the course of the disease and improve the quality of the lives of patients. This work proposes a method of prodromal diagnosis of LBD based on quantitative analysis of actigraphic sleep data. A new method of sleep and wake detection based on the XGBoost classifier and the angle of the z-axis is introduced, which achieves 83% accuracy and surpasses the results of state-of-the-art methods. Furthermore, a method that can distinguish subjects with prodromal LBD (50 subjects with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment) and healthy controls (63 subjects) with 94% accuracy was introduced. The sensitivity of the method of 100% and specificity of 91% was considered sufficient for clinical practice and the proposed methods can help develop decision-making tools that maximize the potential for an early and objective diagnosis of LBD.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NU20-04-00294" target="_blank" >NU20-04-00294: Diagnostika onemocnění s Lewyho tělísky v prodromálním stadiu založená na analýze multimodálních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 45th International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-6654-6948-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
403-406
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Prague
Datum konání akce
13. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—