Logistic Regression Analysis of Targeted Poverty Alleviation with Big Data in Mobile Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146871" target="_blank" >RIV/00216305:26220/22:PU146871 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11036-022-02068-5" target="_blank" >https://link.springer.com/article/10.1007/s11036-022-02068-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11036-022-02068-5" target="_blank" >10.1007/s11036-022-02068-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Logistic Regression Analysis of Targeted Poverty Alleviation with Big Data in Mobile Network
Popis výsledku v původním jazyce
In order to improve the identification accuracy and shorten the analysis time of poor households in poverty alleviation, this paper studies a logistic regression analysis algorithm of targeted poverty alleviation based on mobile big data. Based on the theories related to big poverty alleviation data, Apriori algorithm is used to mine the basic information of households collected through mobile network based on Maslow's hierarchy of needs theory. A multi-dimensional item data of poverty detection is obtained by analyzing the frequent itemsets of association rules in poor areas, and the poverty characteristics of poor areas from different dimensions are analyzed. Taking the big data platform of targeted poverty alleviation in Jiangxi Province, China, as an example, the economic assistance data is selected and sent into the k-means algorithm to cluster by taking the village as the unit. Then, combined with the correlation of poverty characteristics, the abnormal phenomena in poverty alleviation are found, and the effectiveness of the targeted assistance to poverty alleviation target areas is analyzed. Based on nonlinear logistic regression, the identification model of poor households is built, and the Spark frame is used to extract, transform and read the characteristics of samples respectively. Finally, the poor households are identified with the logistic regression algorithm. Experimental results show that the average recognition accuracy of poor households reaches 92%, and the mining time of poverty feature analysis is only 18 s, which improves the efficiency of data analysis than current algorithms.
Název v anglickém jazyce
Logistic Regression Analysis of Targeted Poverty Alleviation with Big Data in Mobile Network
Popis výsledku anglicky
In order to improve the identification accuracy and shorten the analysis time of poor households in poverty alleviation, this paper studies a logistic regression analysis algorithm of targeted poverty alleviation based on mobile big data. Based on the theories related to big poverty alleviation data, Apriori algorithm is used to mine the basic information of households collected through mobile network based on Maslow's hierarchy of needs theory. A multi-dimensional item data of poverty detection is obtained by analyzing the frequent itemsets of association rules in poor areas, and the poverty characteristics of poor areas from different dimensions are analyzed. Taking the big data platform of targeted poverty alleviation in Jiangxi Province, China, as an example, the economic assistance data is selected and sent into the k-means algorithm to cluster by taking the village as the unit. Then, combined with the correlation of poverty characteristics, the abnormal phenomena in poverty alleviation are found, and the effectiveness of the targeted assistance to poverty alleviation target areas is analyzed. Based on nonlinear logistic regression, the identification model of poor households is built, and the Spark frame is used to extract, transform and read the characteristics of samples respectively. Finally, the poor households are identified with the logistic regression algorithm. Experimental results show that the average recognition accuracy of poor households reaches 92%, and the mining time of poverty feature analysis is only 18 s, which improves the efficiency of data analysis than current algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MOBILE NETWORKS & APPLICATIONS
ISSN
1383-469X
e-ISSN
1572-8153
Svazek periodika
2022
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
„“-„“
Kód UT WoS článku
000896491200001
EID výsledku v databázi Scopus
2-s2.0-85143618666