Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU147861" target="_blank" >RIV/00216305:26220/22:PU147861 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9851342" target="_blank" >https://ieeexplore.ieee.org/document/9851342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP55681.2022.9851342" target="_blank" >10.1109/TSP55681.2022.9851342</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images
Popis výsledku v původním jazyce
Osteoporosis results in the deterioration of bone tissues and this problem is prevalent among people all over the world, especially older people. The diagnosis of osteoporosis is frequently made clinically manifested by fractures linked with bone fragility. Thus, early diagnosis would be required to take proper treatment and eliminate excess fractures, lowering mortality and morbidity. The development of deep learning-based technique for diagnosing osteoporosis disease from bone X-ray images, a commonly available and low-cost image-based medical examination approach, is the objective of this study. A deep learning-based architecture, Osteo-Net with many blocks and skip connections is presented in this work. The proposed technique utilizes the robustness of deep learning models to extract high-level features from low-quality X-ray images. The trained model achieved a validation accuracy of 84.06% and testing accuracy of 82.61% on unseen test images with less training time. The proposed method is low-cost and computationally efficient. The experimental results show an excellent classification performance when used for osteoporosis screening and the high efficacy of the proposed method over other state-of-the-art methods. The proposed low-cost deep neural network-based approach could be utilized as a supplement to Dual-energy X-ray Absorptiometry (DXA) screening, particularly in primary health care centers with insufficient DXA machines.
Název v anglickém jazyce
Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images
Popis výsledku anglicky
Osteoporosis results in the deterioration of bone tissues and this problem is prevalent among people all over the world, especially older people. The diagnosis of osteoporosis is frequently made clinically manifested by fractures linked with bone fragility. Thus, early diagnosis would be required to take proper treatment and eliminate excess fractures, lowering mortality and morbidity. The development of deep learning-based technique for diagnosing osteoporosis disease from bone X-ray images, a commonly available and low-cost image-based medical examination approach, is the objective of this study. A deep learning-based architecture, Osteo-Net with many blocks and skip connections is presented in this work. The proposed technique utilizes the robustness of deep learning models to extract high-level features from low-quality X-ray images. The trained model achieved a validation accuracy of 84.06% and testing accuracy of 82.61% on unseen test images with less training time. The proposed method is low-cost and computationally efficient. The experimental results show an excellent classification performance when used for osteoporosis screening and the high efficacy of the proposed method over other state-of-the-art methods. The proposed low-cost deep neural network-based approach could be utilized as a supplement to Dual-energy X-ray Absorptiometry (DXA) screening, particularly in primary health care centers with insufficient DXA machines.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
TSP 2022: 2022 45th International Conference on Telecommunications and Signal Processing
ISBN
9781665469487
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
91-95
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
neuveden
Místo konání akce
Prague
Datum konání akce
13. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001070846300019