Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU147861" target="_blank" >RIV/00216305:26220/22:PU147861 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9851342" target="_blank" >https://ieeexplore.ieee.org/document/9851342</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP55681.2022.9851342" target="_blank" >10.1109/TSP55681.2022.9851342</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images

  • Popis výsledku v původním jazyce

    Osteoporosis results in the deterioration of bone tissues and this problem is prevalent among people all over the world, especially older people. The diagnosis of osteoporosis is frequently made clinically manifested by fractures linked with bone fragility. Thus, early diagnosis would be required to take proper treatment and eliminate excess fractures, lowering mortality and morbidity. The development of deep learning-based technique for diagnosing osteoporosis disease from bone X-ray images, a commonly available and low-cost image-based medical examination approach, is the objective of this study. A deep learning-based architecture, Osteo-Net with many blocks and skip connections is presented in this work. The proposed technique utilizes the robustness of deep learning models to extract high-level features from low-quality X-ray images. The trained model achieved a validation accuracy of 84.06% and testing accuracy of 82.61% on unseen test images with less training time. The proposed method is low-cost and computationally efficient. The experimental results show an excellent classification performance when used for osteoporosis screening and the high efficacy of the proposed method over other state-of-the-art methods. The proposed low-cost deep neural network-based approach could be utilized as a supplement to Dual-energy X-ray Absorptiometry (DXA) screening, particularly in primary health care centers with insufficient DXA machines.

  • Název v anglickém jazyce

    Osteo-Net: A Robust Deep Learning-Based Diagnosis of Osteoporosis Using X-ray images

  • Popis výsledku anglicky

    Osteoporosis results in the deterioration of bone tissues and this problem is prevalent among people all over the world, especially older people. The diagnosis of osteoporosis is frequently made clinically manifested by fractures linked with bone fragility. Thus, early diagnosis would be required to take proper treatment and eliminate excess fractures, lowering mortality and morbidity. The development of deep learning-based technique for diagnosing osteoporosis disease from bone X-ray images, a commonly available and low-cost image-based medical examination approach, is the objective of this study. A deep learning-based architecture, Osteo-Net with many blocks and skip connections is presented in this work. The proposed technique utilizes the robustness of deep learning models to extract high-level features from low-quality X-ray images. The trained model achieved a validation accuracy of 84.06% and testing accuracy of 82.61% on unseen test images with less training time. The proposed method is low-cost and computationally efficient. The experimental results show an excellent classification performance when used for osteoporosis screening and the high efficacy of the proposed method over other state-of-the-art methods. The proposed low-cost deep neural network-based approach could be utilized as a supplement to Dual-energy X-ray Absorptiometry (DXA) screening, particularly in primary health care centers with insufficient DXA machines.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    TSP 2022: 2022 45th International Conference on Telecommunications and Signal Processing

  • ISBN

    9781665469487

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    91-95

  • Název nakladatele

    Institute of Electrical and Electronics Engineers Inc.

  • Místo vydání

    neuveden

  • Místo konání akce

    Prague

  • Datum konání akce

    13. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001070846300019