EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147016" target="_blank" >RIV/00216305:26220/23:PU147016 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-023-08249-x" target="_blank" >https://link.springer.com/article/10.1007/s00521-023-08249-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-023-08249-x" target="_blank" >10.1007/s00521-023-08249-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network
Popis výsledku v původním jazyce
Retinal images are a key element for ophthalmologists in diagnosing a variety of eye illnesses. The retina is vulnerable to microvascular changes as a result of many retinal diseases and a variety of research have been done on early diagnosis of medical images to take proper treatment on time. This paper designs an automated deep learning-based non-invasive framework to diagnose multiple eye diseases using colour fundus images. A multi-class eye disease RFMiD dataset was used to develop an efficient diagnostic framework. Multi-class fundus images were extracted from a multi-label dataset and then various augmentation techniques were applied to make the framework robust in real-time. Images were processed according to the network for low computational demand. A multi-layer neural network EyeDeep-Net has been developed to train and test images for diagnosis of various eye problems in which the keystone convolutional neural network extracts relevant features from the input colour fundus image dataset and then processed features were used to make predictive diagnostic decisions. The strength of the EyeDeep-Net is evaluated using multiple statistical parameters and the performance of the proposed model is found to be significantly superior to multiple baseline state-of-the-art models. A comprehensive comparison of the proposed methodology to the most recent methods proves its efficacy in terms of classification and disease identification through digital fundus images.
Název v anglickém jazyce
EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network
Popis výsledku anglicky
Retinal images are a key element for ophthalmologists in diagnosing a variety of eye illnesses. The retina is vulnerable to microvascular changes as a result of many retinal diseases and a variety of research have been done on early diagnosis of medical images to take proper treatment on time. This paper designs an automated deep learning-based non-invasive framework to diagnose multiple eye diseases using colour fundus images. A multi-class eye disease RFMiD dataset was used to develop an efficient diagnostic framework. Multi-class fundus images were extracted from a multi-label dataset and then various augmentation techniques were applied to make the framework robust in real-time. Images were processed according to the network for low computational demand. A multi-layer neural network EyeDeep-Net has been developed to train and test images for diagnosis of various eye problems in which the keystone convolutional neural network extracts relevant features from the input colour fundus image dataset and then processed features were used to make predictive diagnostic decisions. The strength of the EyeDeep-Net is evaluated using multiple statistical parameters and the performance of the proposed model is found to be significantly superior to multiple baseline state-of-the-art models. A comprehensive comparison of the proposed methodology to the most recent methods proves its efficacy in terms of classification and disease identification through digital fundus images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20900 - Industrial biotechnology
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010019" target="_blank" >VJ02010019: Nástroje forenzní expertizy ručně psaného písma</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
35
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
10551-10571
Kód UT WoS článku
000919030000002
EID výsledku v databázi Scopus
2-s2.0-85146648682