Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147016" target="_blank" >RIV/00216305:26220/23:PU147016 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-023-08249-x" target="_blank" >https://link.springer.com/article/10.1007/s00521-023-08249-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-023-08249-x" target="_blank" >10.1007/s00521-023-08249-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network

  • Popis výsledku v původním jazyce

    Retinal images are a key element for ophthalmologists in diagnosing a variety of eye illnesses. The retina is vulnerable to microvascular changes as a result of many retinal diseases and a variety of research have been done on early diagnosis of medical images to take proper treatment on time. This paper designs an automated deep learning-based non-invasive framework to diagnose multiple eye diseases using colour fundus images. A multi-class eye disease RFMiD dataset was used to develop an efficient diagnostic framework. Multi-class fundus images were extracted from a multi-label dataset and then various augmentation techniques were applied to make the framework robust in real-time. Images were processed according to the network for low computational demand. A multi-layer neural network EyeDeep-Net has been developed to train and test images for diagnosis of various eye problems in which the keystone convolutional neural network extracts relevant features from the input colour fundus image dataset and then processed features were used to make predictive diagnostic decisions. The strength of the EyeDeep-Net is evaluated using multiple statistical parameters and the performance of the proposed model is found to be significantly superior to multiple baseline state-of-the-art models. A comprehensive comparison of the proposed methodology to the most recent methods proves its efficacy in terms of classification and disease identification through digital fundus images.

  • Název v anglickém jazyce

    EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network

  • Popis výsledku anglicky

    Retinal images are a key element for ophthalmologists in diagnosing a variety of eye illnesses. The retina is vulnerable to microvascular changes as a result of many retinal diseases and a variety of research have been done on early diagnosis of medical images to take proper treatment on time. This paper designs an automated deep learning-based non-invasive framework to diagnose multiple eye diseases using colour fundus images. A multi-class eye disease RFMiD dataset was used to develop an efficient diagnostic framework. Multi-class fundus images were extracted from a multi-label dataset and then various augmentation techniques were applied to make the framework robust in real-time. Images were processed according to the network for low computational demand. A multi-layer neural network EyeDeep-Net has been developed to train and test images for diagnosis of various eye problems in which the keystone convolutional neural network extracts relevant features from the input colour fundus image dataset and then processed features were used to make predictive diagnostic decisions. The strength of the EyeDeep-Net is evaluated using multiple statistical parameters and the performance of the proposed model is found to be significantly superior to multiple baseline state-of-the-art models. A comprehensive comparison of the proposed methodology to the most recent methods proves its efficacy in terms of classification and disease identification through digital fundus images.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20900 - Industrial biotechnology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VJ02010019" target="_blank" >VJ02010019: Nástroje forenzní expertizy ručně psaného písma</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    10551-10571

  • Kód UT WoS článku

    000919030000002

  • EID výsledku v databázi Scopus

    2-s2.0-85146648682