Quality comparison of 360° 8K images compressed by conventional and deep learning algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148052" target="_blank" >RIV/00216305:26220/23:PU148052 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10109066" target="_blank" >https://ieeexplore.ieee.org/document/10109066</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA57919.2023.10109066" target="_blank" >10.1109/RADIOELEKTRONIKA57919.2023.10109066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quality comparison of 360° 8K images compressed by conventional and deep learning algorithms
Popis výsledku v původním jazyce
Due to the accessibility of virtual reality in recent years, there has been a great interest in producing and streaming omnidirectional (360° field of view) high resolution images and videos. Since both high resolution and high quality are demanding for the storage and distribution of such content, the use of advanced compression methods is a key factor in achieving this goal. This paper provides an objective comparison of conventional image compression codecs (JPEG, JPEG XL, HEIC, AVIF, VVC Intra) and deep learning image compression algorithms with a JPEG AI framework recommendation. The visual quality evaluation is based on ten images from publicly available databases compressed to predetermined bit rates. Six full reference objective metrics (WS-PSNR, MS-SSIM, VIFp, FSIMc, GMSD, VMAF) are used to evaluate the visual quality of the compressed images. Modern image compression codecs outperform the oldest and most widely used codec JPEG in terms of bandwidth reduction but require more processing power and system resources.
Název v anglickém jazyce
Quality comparison of 360° 8K images compressed by conventional and deep learning algorithms
Popis výsledku anglicky
Due to the accessibility of virtual reality in recent years, there has been a great interest in producing and streaming omnidirectional (360° field of view) high resolution images and videos. Since both high resolution and high quality are demanding for the storage and distribution of such content, the use of advanced compression methods is a key factor in achieving this goal. This paper provides an objective comparison of conventional image compression codecs (JPEG, JPEG XL, HEIC, AVIF, VVC Intra) and deep learning image compression algorithms with a JPEG AI framework recommendation. The visual quality evaluation is based on ten images from publicly available databases compressed to predetermined bit rates. Six full reference objective metrics (WS-PSNR, MS-SSIM, VIFp, FSIMc, GMSD, VMAF) are used to evaluate the visual quality of the compressed images. Modern image compression codecs outperform the oldest and most widely used codec JPEG in terms of bandwidth reduction but require more processing power and system resources.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
33rd International Conference Radioelektronika
ISBN
979-8-3503-9834-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
„“-„“
Název nakladatele
Neuveden
Místo vydání
Pardubice
Místo konání akce
Pardubice
Datum konání akce
19. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000990505700039