Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Chest X-ray Image Analysis using Convolutional Vision Transformer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148419" target="_blank" >RIV/00216305:26220/23:PU148419 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2023.161" target="_blank" >10.13164/eeict.2023.161</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Chest X-ray Image Analysis using Convolutional Vision Transformer

  • Popis výsledku v původním jazyce

    In recent years, computer techniques for clinical image analysis have been improved significantly, especially because of the pandemic situation. Most recent approaches are focused on the detection of viral pneumonia or COVID-19 diseases. However, there is less attention to common pulmonary diseases, such as fibrosis, infiltration and others. This paper introduces the neural network, which is aimed to detect 14 pulmonary diseases. This model is composed of two branches: global, which is the InceptionNetV3, and local, which consists of Inception modules and a modified Vision Transformer. Additionally, the Asymmetric Loss function was utilized to deal with the problem of multilabel classification. The proposed model has achieved an AUC of 0.8012 and an accuracy of 0.7429, which outperforms the well-known classification models.

  • Název v anglickém jazyce

    Chest X-ray Image Analysis using Convolutional Vision Transformer

  • Popis výsledku anglicky

    In recent years, computer techniques for clinical image analysis have been improved significantly, especially because of the pandemic situation. Most recent approaches are focused on the detection of viral pneumonia or COVID-19 diseases. However, there is less attention to common pulmonary diseases, such as fibrosis, infiltration and others. This paper introduces the neural network, which is aimed to detect 14 pulmonary diseases. This model is composed of two branches: global, which is the InceptionNetV3, and local, which consists of Inception modules and a modified Vision Transformer. Additionally, the Asymmetric Loss function was utilized to deal with the problem of multilabel classification. The proposed model has achieved an AUC of 0.8012 and an accuracy of 0.7429, which outperforms the well-known classification models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers

  • ISBN

    978-80-214-6154-3

  • ISSN

    2788-1334

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    161-165

  • Název nakladatele

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    25. 4. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku