Estimation of blood glucose level based on PPG signals measured by smart devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148761" target="_blank" >RIV/00216305:26220/23:PU148761 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2023.137" target="_blank" >10.13164/eeict.2023.137</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of blood glucose level based on PPG signals measured by smart devices
Popis výsledku v původním jazyce
This paper deals with the possibilities of non-invasive determination of blood glucose from photoplethysmographic signals. Monitoring blood sugar is the most important part of managing diabetes. Diabetes is one of the world’s major chronic diseases. Untreated diabetes is often a cause of death. Two datasets have been created by recording the photoplethysmographic signals of 16 people using two smart devices (a smart wristband and a smartphone), along with their blood glucose levels measured in an invasive way. The photoplethysmographic signals were preprocessed, and suitable features were extracted from them. The aim of the work is to propose methods for glycemic classification and prediction. Various machine-learning models were created. The best model for classifying blood glucose into two groups (low blood glucose and high blood glucose) is random forest, which achieves an F1 score of 84% and 80% on two different test sets obtained from two smart devices. The best blood glucose level prediction model is also based on random forest and achieves an MAE of 1.02 mmol/l and 1.17 mmol/l on both testing datasets.
Název v anglickém jazyce
Estimation of blood glucose level based on PPG signals measured by smart devices
Popis výsledku anglicky
This paper deals with the possibilities of non-invasive determination of blood glucose from photoplethysmographic signals. Monitoring blood sugar is the most important part of managing diabetes. Diabetes is one of the world’s major chronic diseases. Untreated diabetes is often a cause of death. Two datasets have been created by recording the photoplethysmographic signals of 16 people using two smart devices (a smart wristband and a smartphone), along with their blood glucose levels measured in an invasive way. The photoplethysmographic signals were preprocessed, and suitable features were extracted from them. The aim of the work is to propose methods for glycemic classification and prediction. Various machine-learning models were created. The best model for classifying blood glucose into two groups (low blood glucose and high blood glucose) is random forest, which achieves an F1 score of 84% and 80% on two different test sets obtained from two smart devices. The best blood glucose level prediction model is also based on random forest and achieves an MAE of 1.02 mmol/l and 1.17 mmol/l on both testing datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
ISBN
978-80-214-6154-3
ISSN
2788-1334
e-ISSN
—
Počet stran výsledku
4
Strana od-do
137-140
Název nakladatele
Brno University of Technology, Faculty of Elektronic Engineering and Communication
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
25. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—