Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing Security Monitoring with AI-Enabled Log Collection and NLP Modules on a Unified Open Source Platform

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148783" target="_blank" >RIV/00216305:26220/23:PU148783 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2023.217" target="_blank" >10.13164/eeict.2023.217</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing Security Monitoring with AI-Enabled Log Collection and NLP Modules on a Unified Open Source Platform

  • Popis výsledku v původním jazyce

    The number of computer attacks continues to increase daily, posing significant challenges to modern security administrators to provide security in their organizations. With the rise of sophisticated cyber threats, it is becoming increasingly difficult to detect and prevent attacks using traditional security measures. As a result, security monitoring solutions such as Security Information and Event Management (SIEM) have become a critical component of modern security infrastructures. However, these solutions still face limitations, and administrators are constantly seeking ways to enhance their capabilities to effectively protect their cyber units. This paper explores how advanced deep learning techniques can help boost security monitoring capabilities by utilizing them throughout all stages of log processing. The presented platform has the potential to fundamentally transform and bring about a significant change in the field of security monitoring with advanced AI capabilities. The study includes a detailed comparison of modern log collection platforms, with the goal of determining the most effective approach. The key benefits of the proposed solution are its scalability and multipurpose nature. The platform integrates an open source solution and allows the organization to connect any event log sources or the entire SIEM solution, normalize and filter data, and use this data to train and deploy different AI models to perform different security monitoring tasks more efficiently.

  • Název v anglickém jazyce

    Enhancing Security Monitoring with AI-Enabled Log Collection and NLP Modules on a Unified Open Source Platform

  • Popis výsledku anglicky

    The number of computer attacks continues to increase daily, posing significant challenges to modern security administrators to provide security in their organizations. With the rise of sophisticated cyber threats, it is becoming increasingly difficult to detect and prevent attacks using traditional security measures. As a result, security monitoring solutions such as Security Information and Event Management (SIEM) have become a critical component of modern security infrastructures. However, these solutions still face limitations, and administrators are constantly seeking ways to enhance their capabilities to effectively protect their cyber units. This paper explores how advanced deep learning techniques can help boost security monitoring capabilities by utilizing them throughout all stages of log processing. The presented platform has the potential to fundamentally transform and bring about a significant change in the field of security monitoring with advanced AI capabilities. The study includes a detailed comparison of modern log collection platforms, with the goal of determining the most effective approach. The key benefits of the proposed solution are its scalability and multipurpose nature. The platform integrates an open source solution and allows the organization to connect any event log sources or the entire SIEM solution, normalize and filter data, and use this data to train and deploy different AI models to perform different security monitoring tasks more efficiently.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected Papers

  • ISBN

    978-80-214-6154-3

  • ISSN

    2788-1334

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    217-221

  • Název nakladatele

    Brno University of Technology; The Faculty of Electrical Engineering and Communication

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    25. 4. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku