Multi-scale Attention Network for Early Detection of Alzheimer’s Disease from MRI images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149871" target="_blank" >RIV/00216305:26220/23:PU149871 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10333096" target="_blank" >https://ieeexplore.ieee.org/document/10333096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT61075.2023.10333096" target="_blank" >10.1109/ICUMT61075.2023.10333096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-scale Attention Network for Early Detection of Alzheimer’s Disease from MRI images
Popis výsledku v původním jazyce
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that affects brain cells and causes irreversible memory loss, often known as dementia. Many individuals die from this disease each year due to its incurable nature. However, the timely identification of the ailment can play a pivotal role in mitigating its progression. Nowadays, deep learning is used to design an automated system that can detect and classify AD in the early stages. Thus, a novel multi-scale attention network (MSAN-Net) is introduced in this study. The proposed technique uses brain magnetic resonance imaging (MRI) to categorize images into four stages; non-demented, mild demented, very mild demented, and moderate demented. The proposed work is compared with four state-of-the-art methods, and the experimental results suggest that the MSAN-Net exhibits superior performance than the compared approaches.
Název v anglickém jazyce
Multi-scale Attention Network for Early Detection of Alzheimer’s Disease from MRI images
Popis výsledku anglicky
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that affects brain cells and causes irreversible memory loss, often known as dementia. Many individuals die from this disease each year due to its incurable nature. However, the timely identification of the ailment can play a pivotal role in mitigating its progression. Nowadays, deep learning is used to design an automated system that can detect and classify AD in the early stages. Thus, a novel multi-scale attention network (MSAN-Net) is introduced in this study. The proposed technique uses brain magnetic resonance imaging (MRI) to categorize images into four stages; non-demented, mild demented, very mild demented, and moderate demented. The proposed work is compared with four state-of-the-art methods, and the experimental results suggest that the MSAN-Net exhibits superior performance than the compared approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010019" target="_blank" >VJ02010019: Nástroje forenzní expertizy ručně psaného písma</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
50-55
Název nakladatele
IEEE
Místo vydání
Ghent, Belgium
Místo konání akce
Gent, Belgium
Datum konání akce
30. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—