Local electrical characteristic of memristor structure in a high-resistance state obtained using electrostatic force microscopy: Fractal and multifractal dynamics of surface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150056" target="_blank" >RIV/00216305:26220/23:PU150056 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0169433223025436?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433223025436?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2023.158863" target="_blank" >10.1016/j.apsusc.2023.158863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local electrical characteristic of memristor structure in a high-resistance state obtained using electrostatic force microscopy: Fractal and multifractal dynamics of surface
Popis výsledku v původním jazyce
A heterostructure BiFeO3/TiO2(Nt)Ti (BFOT) was obtained by the atomic layer deposition (ALD) method. After thermal treatment, the redistribution of Fe/Ti atoms forms an Aurivillius intermediate layered phase, and local charge capture centers are formed in the sample. Due to cationic non-stoichiometry, the BFO film exhibits p-type conductivity, while the nanotubes exhibit n-type conductivity due to oxygen vacancies. It was observed that lateral displacement of the sample can lead to ferroelectric switching, which can, in turn, affect the transition of the memristive structure from high-resistance (HRS) to low-resistance states (LRS). The hysteresis suppression tends to transition to an ohmic character and depends on the amplitude, frequency, and duration of the periodic signal. It has been found that compensation of static charge during resistive switching can affect the transport properties of the material. Fractal dimension analysis showed an acceleration of structure restructuring with increasing voltage, possibly contributing to the transition from an insulator to a metal in certain areas of the film volume. The joint analysis of piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM), and fractal/multifractal dynamics showed a correlation between surface static charge and piezopotential. The new methodology described in this work can help understand the resistive switching processes in ferroelectric/ semiconductor memristive structures.
Název v anglickém jazyce
Local electrical characteristic of memristor structure in a high-resistance state obtained using electrostatic force microscopy: Fractal and multifractal dynamics of surface
Popis výsledku anglicky
A heterostructure BiFeO3/TiO2(Nt)Ti (BFOT) was obtained by the atomic layer deposition (ALD) method. After thermal treatment, the redistribution of Fe/Ti atoms forms an Aurivillius intermediate layered phase, and local charge capture centers are formed in the sample. Due to cationic non-stoichiometry, the BFO film exhibits p-type conductivity, while the nanotubes exhibit n-type conductivity due to oxygen vacancies. It was observed that lateral displacement of the sample can lead to ferroelectric switching, which can, in turn, affect the transition of the memristive structure from high-resistance (HRS) to low-resistance states (LRS). The hysteresis suppression tends to transition to an ohmic character and depends on the amplitude, frequency, and duration of the periodic signal. It has been found that compensation of static charge during resistive switching can affect the transport properties of the material. Fractal dimension analysis showed an acceleration of structure restructuring with increasing voltage, possibly contributing to the transition from an insulator to a metal in certain areas of the film volume. The joint analysis of piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM), and fractal/multifractal dynamics showed a correlation between surface static charge and piezopotential. The new methodology described in this work can help understand the resistive switching processes in ferroelectric/ semiconductor memristive structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
1873-5584
Svazek periodika
647
Číslo periodika v rámci svazku
Únor 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001127876500001
EID výsledku v databázi Scopus
—