Fractional-order transfer function - Doing a better choice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150899" target="_blank" >RIV/00216305:26220/23:PU150899 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/acp/article/2605/1/020011/2876024/Fractional-order-transfer-function-Doing-a-better" target="_blank" >https://pubs.aip.org/aip/acp/article/2605/1/020011/2876024/Fractional-order-transfer-function-Doing-a-better</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0111093" target="_blank" >10.1063/5.0111093</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional-order transfer function - Doing a better choice
Popis výsledku v původním jazyce
In this paper we analyze fractional-order transfer function and its possible variant forms, each of (2+α)-order and being suitable for low-pass filter design. Using the Butterworth approximation, we show that all variant forms; three in this case; of such transfer functions basically always result in the required magnitude response, but are characteristic with other behavior from the viewpoint of phase response and mainly the group delay. Hence, we show that the presence of fractional order α in fractional-order filter design does not provide just another degree of freedom regarding fine setting the slope of magnitude response in the stop-band. Dealing with fractional order, the possibility to assume and later select from variant forms of transfer function can be seen as another degree of freedom. We show that depending on selecting the specific form from the set of possible transfer functions we may observe different performance in the other analyzed parameters of the filter. This feature gives us the possibility to select such fractional transfer function that primarily follows the approximation type from the viewpoint of magnitude response but also may provide better performance regarding other frequency filter parameter.
Název v anglickém jazyce
Fractional-order transfer function - Doing a better choice
Popis výsledku anglicky
In this paper we analyze fractional-order transfer function and its possible variant forms, each of (2+α)-order and being suitable for low-pass filter design. Using the Butterworth approximation, we show that all variant forms; three in this case; of such transfer functions basically always result in the required magnitude response, but are characteristic with other behavior from the viewpoint of phase response and mainly the group delay. Hence, we show that the presence of fractional order α in fractional-order filter design does not provide just another degree of freedom regarding fine setting the slope of magnitude response in the stop-band. Dealing with fractional order, the possibility to assume and later select from variant forms of transfer function can be seen as another degree of freedom. We show that depending on selecting the specific form from the set of possible transfer functions we may observe different performance in the other analyzed parameters of the filter. This feature gives us the possibility to select such fractional transfer function that primarily follows the approximation type from the viewpoint of magnitude response but also may provide better performance regarding other frequency filter parameter.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-24585S" target="_blank" >GA19-24585S: Syntéza elektrických fantomů věrně popisující fraktální impedanční chování reálných systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
9780735444119
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
„020011-1“-„020011-8“
Název nakladatele
American Institute of Physics Inc.
Místo vydání
neuveden
Místo konání akce
Izhevsk
Datum konání akce
24. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—