Performance Scaling of mmWave Personal IoT Networks (PINs) for XR Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150978" target="_blank" >RIV/00216305:26220/23:PU150978 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10283621" target="_blank" >https://ieeexplore.ieee.org/document/10283621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCWorkshops57953.2023.10283621" target="_blank" >10.1109/ICCWorkshops57953.2023.10283621</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Scaling of mmWave Personal IoT Networks (PINs) for XR Applications
Popis výsledku v původním jazyce
To provide a high-quality user experience in Extended Reality (XR) applications, high-throughput and low-latency communication is essential. A promising solution is the use of distributed networks operating in the higher frequency bands, such as millimeter-wave (mmWave) wearable Personal IoT Networks (PINs). However, in crowded environments, intra-network interactions can disrupt the Quality of Experience (QoE) for users. To improve the QoE, the understanding of the system-level performance trade-offs in these networks is important. This paper investigates the impact of various system parameters on the system-level performance of mmWave wearable PINs with 3D beamforming and data rate adaptation to the channel conditions in an environment with human body blockage. We employ an analytical methodology that combines stochastic geometry and queueing theory to devise an expression for the stationary distribution of the system and use it to compute the key metrics that describe the system-level performance. To assess mmWave PINs for XR in crowded environments, we examine the system operation trade-offs and explore the performance scaling.
Název v anglickém jazyce
Performance Scaling of mmWave Personal IoT Networks (PINs) for XR Applications
Popis výsledku anglicky
To provide a high-quality user experience in Extended Reality (XR) applications, high-throughput and low-latency communication is essential. A promising solution is the use of distributed networks operating in the higher frequency bands, such as millimeter-wave (mmWave) wearable Personal IoT Networks (PINs). However, in crowded environments, intra-network interactions can disrupt the Quality of Experience (QoE) for users. To improve the QoE, the understanding of the system-level performance trade-offs in these networks is important. This paper investigates the impact of various system parameters on the system-level performance of mmWave wearable PINs with 3D beamforming and data rate adaptation to the channel conditions in an environment with human body blockage. We employ an analytical methodology that combines stochastic geometry and queueing theory to devise an expression for the stationary distribution of the system and use it to compute the key metrics that describe the system-level performance. To assess mmWave PINs for XR in crowded environments, we examine the system operation trade-offs and explore the performance scaling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Communications Workshops: Sustainable Communications for Renaissance, ICC Workshops 2023
ISBN
979-8-3503-3307-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1136-1142
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
neuveden
Místo konání akce
Roma
Datum konání akce
28. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—