High-efficiency inertial focusing based on enhanced secondary flow generated by ring-inner obstacle combined channels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU149893" target="_blank" >RIV/00216305:26220/24:PU149893 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0956566323002610?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0956566323002610?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.snb.2023.134708" target="_blank" >10.1016/j.snb.2023.134708</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-efficiency inertial focusing based on enhanced secondary flow generated by ring-inner obstacle combined channels
Popis výsledku v původním jazyce
Inertial-focusing microfluidics enables extensive applications such as particle manipulation, single-cell analysis, and flow cytometry due to its various advantages, including high throughput, simplicity of devices, ease of operation, and freedom from external fields. Generally, only one type of secondary flow, such as Dean or geometry-induced secondary flow, is used in inertial focusing, leading to a low focusing efficiency. Combining channels with two or more geometries can enhance the secondary flows and thus improve the focusing performance. This study investigated the inertial focusing mechanism of a combination of four channel types. First, we constructed an annular channel, a contraction-expansion array channel, and an annular channel with obstacles distributed along the inner and outer walls. Then, theoretical modeling and focusing experiments for the four channels were carried out using four kinds of fluorescent particles as well as breast cancer cells. The results demonstrated that the annular channel combined with obstacles along the inner wall (ring-inner obstacle combined channel) generated an enhanced secondary flow and exhibited a particle-focusing efficiency of > 99% and a cell-focusing efficiency of > 95%. Furthermore, we summarized the design considerations of the combined channels for promoting cell focusing and separation. The inertial focusing devices with combined channels could offer an efficient means for continuous cell manipulation, high-throughput cytometry, and high-precision single cell analysis.
Název v anglickém jazyce
High-efficiency inertial focusing based on enhanced secondary flow generated by ring-inner obstacle combined channels
Popis výsledku anglicky
Inertial-focusing microfluidics enables extensive applications such as particle manipulation, single-cell analysis, and flow cytometry due to its various advantages, including high throughput, simplicity of devices, ease of operation, and freedom from external fields. Generally, only one type of secondary flow, such as Dean or geometry-induced secondary flow, is used in inertial focusing, leading to a low focusing efficiency. Combining channels with two or more geometries can enhance the secondary flows and thus improve the focusing performance. This study investigated the inertial focusing mechanism of a combination of four channel types. First, we constructed an annular channel, a contraction-expansion array channel, and an annular channel with obstacles distributed along the inner and outer walls. Then, theoretical modeling and focusing experiments for the four channels were carried out using four kinds of fluorescent particles as well as breast cancer cells. The results demonstrated that the annular channel combined with obstacles along the inner wall (ring-inner obstacle combined channel) generated an enhanced secondary flow and exhibited a particle-focusing efficiency of > 99% and a cell-focusing efficiency of > 95%. Furthermore, we summarized the design considerations of the combined channels for promoting cell focusing and separation. The inertial focusing devices with combined channels could offer an efficient means for continuous cell manipulation, high-throughput cytometry, and high-precision single cell analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI04000057" target="_blank" >VI04000057: Velmi rychlý přenosný systém pro detekci SARS-CoV-2</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors and Actuators B: Chemical
ISSN
0925-4005
e-ISSN
—
Svazek periodika
398
Číslo periodika v rámci svazku
134708
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
„134708“-„“
Kód UT WoS článku
001114593800001
EID výsledku v databázi Scopus
2-s2.0-85173883895