Augusta: From RNA-Seq to Gene Regulatory Networks and Boolean Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU150245" target="_blank" >RIV/00216305:26220/24:PU150245 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2001037024000138?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2001037024000138?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csbj.2024.01.013" target="_blank" >10.1016/j.csbj.2024.01.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Augusta: From RNA-Seq to Gene Regulatory Networks and Boolean Models
Popis výsledku v původním jazyce
Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in a wide range of areas, e.g., biotechnology or medicine, with significant benefits. Unfortunately, there are only a few computational gene regulatory models of whole genomes allowing static and dynamic analysis due to the lack of sophisticated tools for their reconstruction. Here, we describe Augusta, an open-source Python package for Gene Regulatory Network (GRN) and Boolean Network (BN) inference from the high-throughput gene expression data. Augusta can reconstruct genome-wide models suitable for static and dynamic analyses. Augusta uses a unique approach where the first estimation of a GRN inferred from expression data is further refined by predicting transcription factor binding motifs in promoters of regulated genes and by incorporating verified interactions obtained from databases. Moreover, a refined GRN is transformed into a draft BN by searching in the curated model database and setting logical rules to incoming edges of target genes, which can be further manually edited as the model is provided in the SBML file format. The approach is applicable even if information about the organism under study is not available in the databases, which is typically the case for non-model organisms including most microbes. Augusta can be operated from the command line and, thus, is easy to use for automated prediction of models for various genomes. The Augusta package is freely available at github.com/JanaMus/Augusta. Documentation and tutorials are available at augusta.readthedocs.io.
Název v anglickém jazyce
Augusta: From RNA-Seq to Gene Regulatory Networks and Boolean Models
Popis výsledku anglicky
Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in a wide range of areas, e.g., biotechnology or medicine, with significant benefits. Unfortunately, there are only a few computational gene regulatory models of whole genomes allowing static and dynamic analysis due to the lack of sophisticated tools for their reconstruction. Here, we describe Augusta, an open-source Python package for Gene Regulatory Network (GRN) and Boolean Network (BN) inference from the high-throughput gene expression data. Augusta can reconstruct genome-wide models suitable for static and dynamic analyses. Augusta uses a unique approach where the first estimation of a GRN inferred from expression data is further refined by predicting transcription factor binding motifs in promoters of regulated genes and by incorporating verified interactions obtained from databases. Moreover, a refined GRN is transformed into a draft BN by searching in the curated model database and setting logical rules to incoming edges of target genes, which can be further manually edited as the model is provided in the SBML file format. The approach is applicable even if information about the organism under study is not available in the databases, which is typically the case for non-model organisms including most microbes. Augusta can be operated from the command line and, thus, is easy to use for automated prediction of models for various genomes. The Augusta package is freely available at github.com/JanaMus/Augusta. Documentation and tutorials are available at augusta.readthedocs.io.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-10845S" target="_blank" >GA22-10845S: Studium role polyhydroxyalkanoátů u bakterie Schlegelella thermodepolymerans – slibného bakteriálního kandidáta pro biotechnologie nové generace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational and Structural Biotechnology Journal
ISSN
2001-0370
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
SE - Švédské království
Počet stran výsledku
8
Strana od-do
783-790
Kód UT WoS článku
001174569000001
EID výsledku v databázi Scopus
2-s2.0-85185178942