DeepRespNet: A deep neural network for classification of respiratory sounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151076" target="_blank" >RIV/00216305:26220/24:PU151076 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1746809424002490?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1746809424002490?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2024.106191" target="_blank" >10.1016/j.bspc.2024.106191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DeepRespNet: A deep neural network for classification of respiratory sounds
Popis výsledku v původním jazyce
Respiratory sounds convey significant information about the pulmonary status. This study proposes a deep learning-based framework to create an automatic, non-invasive, diagnostic method of categorizing pulmonary sounds. A labelled database of pulmonary sounds has been collected using an electronic stethoscope and audio recording instrument. Two deep learning architectures, 1D DeepRespNet and 2D DeepRespNet are proposed in this work that were trained and evaluated with normalised 1-D time series and 2-D spectrograms of acoustic signals of six types of lung sounds, respectively. The models were highly optimized to yield superior performance on the considered dataset. Experimental results demonstrate that the 2D DeepRespNet model trained with spectrogram-based representations yields higher accuracy of 95.2% on the test data as compared to the 1D DeepRespNet trained on the time-series data. The proposed model may be deployed on a single board computer or integrated into a smartphone to develop a standalone diagnostic tool to accurately and objectively classify abnormal lung sounds with low time complexity.
Název v anglickém jazyce
DeepRespNet: A deep neural network for classification of respiratory sounds
Popis výsledku anglicky
Respiratory sounds convey significant information about the pulmonary status. This study proposes a deep learning-based framework to create an automatic, non-invasive, diagnostic method of categorizing pulmonary sounds. A labelled database of pulmonary sounds has been collected using an electronic stethoscope and audio recording instrument. Two deep learning architectures, 1D DeepRespNet and 2D DeepRespNet are proposed in this work that were trained and evaluated with normalised 1-D time series and 2-D spectrograms of acoustic signals of six types of lung sounds, respectively. The models were highly optimized to yield superior performance on the considered dataset. Experimental results demonstrate that the 2D DeepRespNet model trained with spectrogram-based representations yields higher accuracy of 95.2% on the test data as compared to the 1D DeepRespNet trained on the time-series data. The proposed model may be deployed on a single board computer or integrated into a smartphone to develop a standalone diagnostic tool to accurately and objectively classify abnormal lung sounds with low time complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
93
Číslo periodika v rámci svazku
July 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001206742600001
EID výsledku v databázi Scopus
2-s2.0-85187204608