Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DeepRespNet: A deep neural network for classification of respiratory sounds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151076" target="_blank" >RIV/00216305:26220/24:PU151076 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1746809424002490?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1746809424002490?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bspc.2024.106191" target="_blank" >10.1016/j.bspc.2024.106191</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DeepRespNet: A deep neural network for classification of respiratory sounds

  • Popis výsledku v původním jazyce

    Respiratory sounds convey significant information about the pulmonary status. This study proposes a deep learning-based framework to create an automatic, non-invasive, diagnostic method of categorizing pulmonary sounds. A labelled database of pulmonary sounds has been collected using an electronic stethoscope and audio recording instrument. Two deep learning architectures, 1D DeepRespNet and 2D DeepRespNet are proposed in this work that were trained and evaluated with normalised 1-D time series and 2-D spectrograms of acoustic signals of six types of lung sounds, respectively. The models were highly optimized to yield superior performance on the considered dataset. Experimental results demonstrate that the 2D DeepRespNet model trained with spectrogram-based representations yields higher accuracy of 95.2% on the test data as compared to the 1D DeepRespNet trained on the time-series data. The proposed model may be deployed on a single board computer or integrated into a smartphone to develop a standalone diagnostic tool to accurately and objectively classify abnormal lung sounds with low time complexity.

  • Název v anglickém jazyce

    DeepRespNet: A deep neural network for classification of respiratory sounds

  • Popis výsledku anglicky

    Respiratory sounds convey significant information about the pulmonary status. This study proposes a deep learning-based framework to create an automatic, non-invasive, diagnostic method of categorizing pulmonary sounds. A labelled database of pulmonary sounds has been collected using an electronic stethoscope and audio recording instrument. Two deep learning architectures, 1D DeepRespNet and 2D DeepRespNet are proposed in this work that were trained and evaluated with normalised 1-D time series and 2-D spectrograms of acoustic signals of six types of lung sounds, respectively. The models were highly optimized to yield superior performance on the considered dataset. Experimental results demonstrate that the 2D DeepRespNet model trained with spectrogram-based representations yields higher accuracy of 95.2% on the test data as compared to the 1D DeepRespNet trained on the time-series data. The proposed model may be deployed on a single board computer or integrated into a smartphone to develop a standalone diagnostic tool to accurately and objectively classify abnormal lung sounds with low time complexity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Signal Processing and Control

  • ISSN

    1746-8094

  • e-ISSN

    1746-8108

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    July 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001206742600001

  • EID výsledku v databázi Scopus

    2-s2.0-85187204608