Heat Effects during the Operation of Lead-Acid Batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151387" target="_blank" >RIV/00216305:26220/24:PU151387 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2313-0105/10/5/148" target="_blank" >https://www.mdpi.com/2313-0105/10/5/148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/batteries10050148" target="_blank" >10.3390/batteries10050148</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat Effects during the Operation of Lead-Acid Batteries
Popis výsledku v původním jazyce
Thermal events in lead-acid batteries during their operation play an important role; they affect not only the reaction rate of ongoing electrochemical reactions, but also the rate of discharge and self-discharge, length of service life and, in critical cases, can even cause a fatal failure of the battery, known as “thermal runaway.” This contribution discusses the parameters affecting the thermal state of the lead-acid battery. It was found by calculations and measurements that there is a cooling component in the lead-acid battery system which is caused by the endothermic discharge reactions and electrolysis of water during charging, related to entropy change contribution. Thus, under certain circumstances, it is possible to lower the temperature of the lead-acid battery during its discharging. The Joule heat generated on the internal resistance of the cell due to current flow, the exothermic charging reaction, and above all, the gradual increase in polarization as the cell voltage increases during charging all contribute to the heating of the cell, overtaking the cooling effect. Of these three sources of thermal energy, Joule heating in polarization resistance contributes the most to the temperature rise in the lead-acid battery. Thus, the maximum voltage reached determines the slope of the temperature rise in the lead-acid battery cell, and by a suitably chosen limiting voltage, it is possible to limit the danger of the “thermal runaway” effect. The overall thermal conditions of the experimental cell are significantly affected by the ambient temperature of the external environment and the rate of heat transfer through the walls of the calorimeter. A series of experiments with direct temperature measurement of individual locations within a lead-acid battery uses a calorimeter made of expanded polystyrene to minimize external influences. A hitherto unpublished phenomenon is discussed whereby the temperature of the positive electrode was lower than that of the negati
Název v anglickém jazyce
Heat Effects during the Operation of Lead-Acid Batteries
Popis výsledku anglicky
Thermal events in lead-acid batteries during their operation play an important role; they affect not only the reaction rate of ongoing electrochemical reactions, but also the rate of discharge and self-discharge, length of service life and, in critical cases, can even cause a fatal failure of the battery, known as “thermal runaway.” This contribution discusses the parameters affecting the thermal state of the lead-acid battery. It was found by calculations and measurements that there is a cooling component in the lead-acid battery system which is caused by the endothermic discharge reactions and electrolysis of water during charging, related to entropy change contribution. Thus, under certain circumstances, it is possible to lower the temperature of the lead-acid battery during its discharging. The Joule heat generated on the internal resistance of the cell due to current flow, the exothermic charging reaction, and above all, the gradual increase in polarization as the cell voltage increases during charging all contribute to the heating of the cell, overtaking the cooling effect. Of these three sources of thermal energy, Joule heating in polarization resistance contributes the most to the temperature rise in the lead-acid battery. Thus, the maximum voltage reached determines the slope of the temperature rise in the lead-acid battery cell, and by a suitably chosen limiting voltage, it is possible to limit the danger of the “thermal runaway” effect. The overall thermal conditions of the experimental cell are significantly affected by the ambient temperature of the external environment and the rate of heat transfer through the walls of the calorimeter. A series of experiments with direct temperature measurement of individual locations within a lead-acid battery uses a calorimeter made of expanded polystyrene to minimize external influences. A hitherto unpublished phenomenon is discussed whereby the temperature of the positive electrode was lower than that of the negati
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Batteries-Basel
ISSN
2313-0105
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
001232755100001
EID výsledku v databázi Scopus
2-s2.0-85194093677