Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151550" target="_blank" >RIV/00216305:26220/24:PU151550 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10410212" target="_blank" >https://ieeexplore.ieee.org/document/10410212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSEN.2024.3353669" target="_blank" >10.1109/JSEN.2024.3353669</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations
Popis výsledku v původním jazyce
The research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit designers, enabling them to experiment with the diverse electrical characteristics of corresponding solid-state memristors. This article specifically focuses on the circuit-based emulation of silicon nanowire (SiNW) known for its effectiveness in biosensing applications. First, a fully floating memristor emulator has been presented based on a voltage differencing current conveyor (VDCC) and an operational transconductance amplifier (OTA)-controlled resistor, along with a grounded capacitance. Furthermore, the proposed memristor emulator was realized by employing integrated cells based on the discussed technology, and the simulation/experimental results are presented and analyzed. The experiments also confirmed the nonvolatile behavior of the realized memristor. The results demonstrate that the real-time implementation of the proposed emulator can accurately generate hysteretic behavior in both incremental and decremental memristive mode. Finally, the incremental and decremental pinched hysteresis loop (PHL) responses generated by the proposed emulator have been utilized to replicate the various types of memristive responses offered by SiNW by adding a simple extension to the circuit.
Název v anglickém jazyce
Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations
Popis výsledku anglicky
The research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit designers, enabling them to experiment with the diverse electrical characteristics of corresponding solid-state memristors. This article specifically focuses on the circuit-based emulation of silicon nanowire (SiNW) known for its effectiveness in biosensing applications. First, a fully floating memristor emulator has been presented based on a voltage differencing current conveyor (VDCC) and an operational transconductance amplifier (OTA)-controlled resistor, along with a grounded capacitance. Furthermore, the proposed memristor emulator was realized by employing integrated cells based on the discussed technology, and the simulation/experimental results are presented and analyzed. The experiments also confirmed the nonvolatile behavior of the realized memristor. The results demonstrate that the real-time implementation of the proposed emulator can accurately generate hysteretic behavior in both incremental and decremental memristive mode. Finally, the incremental and decremental pinched hysteresis loop (PHL) responses generated by the proposed emulator have been utilized to replicate the various types of memristive responses offered by SiNW by adding a simple extension to the circuit.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE SENSORS JOURNAL
ISSN
1530-437X
e-ISSN
1558-1748
Svazek periodika
24
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
8036-8044
Kód UT WoS článku
001197673400086
EID výsledku v databázi Scopus
2-s2.0-85182929631