Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Delay-Aware Link Scheduling in IAB Networks with Dynamic User Demands

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151735" target="_blank" >RIV/00216305:26220/24:PU151735 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10568354/" target="_blank" >https://ieeexplore.ieee.org/document/10568354/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TVT.2024.3409179" target="_blank" >10.1109/TVT.2024.3409179</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Delay-Aware Link Scheduling in IAB Networks with Dynamic User Demands

  • Popis výsledku v původním jazyce

    Integrated Access and Backhaul (IAB) is a costefficient network densification technology for improving the coverage and capacity of the millimeter-wave (mmWave) cellular networks. In IAB systems, user traffic is forwarded to/from the wired base station by one or more relay stations, known as IAB nodes. Due to the multi-hop relaying, these systems may be subject to large packet delays and poor performance when the load is unevenly distributed among nodes. Addressing this limitation via delay-aware access and backhaul link scheduling in IAB networks is challenging due to potentially large network scale, complex topology, half-duplex, and interference constraints. In this paper, the topical link scheduling problem is formulated as a Markov decision problem (MDP) for a single-donor IAB system with a general topology that allows for users with different delay requirements and traffic dynamics. The proposed link scheduling strategy jointly optimizes (i) user traffic routing and (ii) multiplexing of access and backhaul links under half-duplex constraints and non-negligible interference that may arise in dense IAB systems even with high beam directionality. To address the complexity of our formulated MDP, we consider several approximation methods, namely, Q-learning, Monte Carlo Tree Search (MCTS), and genetic algorithms (GAs). Then, we propose a customized version of the GA, which provides the preferred optimality-complexity trade-off and offers a 15% packet delay reduction as compared to the state-of-the-art backpressure algorithm.

  • Název v anglickém jazyce

    Delay-Aware Link Scheduling in IAB Networks with Dynamic User Demands

  • Popis výsledku anglicky

    Integrated Access and Backhaul (IAB) is a costefficient network densification technology for improving the coverage and capacity of the millimeter-wave (mmWave) cellular networks. In IAB systems, user traffic is forwarded to/from the wired base station by one or more relay stations, known as IAB nodes. Due to the multi-hop relaying, these systems may be subject to large packet delays and poor performance when the load is unevenly distributed among nodes. Addressing this limitation via delay-aware access and backhaul link scheduling in IAB networks is challenging due to potentially large network scale, complex topology, half-duplex, and interference constraints. In this paper, the topical link scheduling problem is formulated as a Markov decision problem (MDP) for a single-donor IAB system with a general topology that allows for users with different delay requirements and traffic dynamics. The proposed link scheduling strategy jointly optimizes (i) user traffic routing and (ii) multiplexing of access and backhaul links under half-duplex constraints and non-negligible interference that may arise in dense IAB systems even with high beam directionality. To address the complexity of our formulated MDP, we consider several approximation methods, namely, Q-learning, Monte Carlo Tree Search (MCTS), and genetic algorithms (GAs). Then, we propose a customized version of the GA, which provides the preferred optimality-complexity trade-off and offers a 15% packet delay reduction as compared to the state-of-the-art backpressure algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

  • ISSN

    0018-9545

  • e-ISSN

    1939-9359

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    15125-15139

  • Kód UT WoS článku

    001336949600023

  • EID výsledku v databázi Scopus

    2-s2.0-85196761584