Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

UAV-BS Integration with Urban Infrastructure: An Energy Efficiency Perspective

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152707" target="_blank" >RIV/00216305:26220/24:PU152707 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/10742573" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10742573</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MCOM.001.2400247" target="_blank" >10.1109/MCOM.001.2400247</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    UAV-BS Integration with Urban Infrastructure: An Energy Efficiency Perspective

  • Popis výsledku v původním jazyce

    The integration of uncrewed aerial vehicles (UAVs) with fifth-generation (5G) cellular networks has been a prominent research focus in recent years and continues to attract significant interest in the context of sixth-generation (6G) wireless networks. UAVs can serve as aerial wireless platforms to provide on-demand coverage, mobile edge computing, and enhanced sensing and communication services. However, UAV-assisted networks present new opportunities and challenges due to the inherent size, weight, and power constraints of UAVs, their controllable mobility, and the line-ofsight (LoS) characteristics of communication channels. This article discusses these opportunities and challenges from the viewpoint of mobile network operators (MNOs), and offers a novel perspective on efficiently utilizing modern city infrastructures for UAV deployment in typical urban scenarios. In these scenarios, UAV-mounted base stations (UAV-BSs) can significantly improve service continuity and network energy efficiency. We compare system performance in terms of user satisfaction and energy efficiency between conventional UAV deployment, which follows demand dynamics, and an alternative approach where UAVs land on urban infrastructure equipped with charging stations. To identify the preferred UAV locations, while considering the limited availability of such stations and environmental dynamics, we employ a data-driven genetic algorithm. This algorithm closely approximates the true optimal locations subject to a moderate computational budget.

  • Název v anglickém jazyce

    UAV-BS Integration with Urban Infrastructure: An Energy Efficiency Perspective

  • Popis výsledku anglicky

    The integration of uncrewed aerial vehicles (UAVs) with fifth-generation (5G) cellular networks has been a prominent research focus in recent years and continues to attract significant interest in the context of sixth-generation (6G) wireless networks. UAVs can serve as aerial wireless platforms to provide on-demand coverage, mobile edge computing, and enhanced sensing and communication services. However, UAV-assisted networks present new opportunities and challenges due to the inherent size, weight, and power constraints of UAVs, their controllable mobility, and the line-ofsight (LoS) characteristics of communication channels. This article discusses these opportunities and challenges from the viewpoint of mobile network operators (MNOs), and offers a novel perspective on efficiently utilizing modern city infrastructures for UAV deployment in typical urban scenarios. In these scenarios, UAV-mounted base stations (UAV-BSs) can significantly improve service continuity and network energy efficiency. We compare system performance in terms of user satisfaction and energy efficiency between conventional UAV deployment, which follows demand dynamics, and an alternative approach where UAVs land on urban infrastructure equipped with charging stations. To identify the preferred UAV locations, while considering the limited availability of such stations and environmental dynamics, we employ a data-driven genetic algorithm. This algorithm closely approximates the true optimal locations subject to a moderate computational budget.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE COMMUNICATIONS MAGAZINE

  • ISSN

    0163-6804

  • e-ISSN

    1558-1896

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    01-07

  • Kód UT WoS článku

    001351566800001

  • EID výsledku v databázi Scopus