Noise Characterization of Graphene Sensors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU156013" target="_blank" >RIV/00216305:26220/24:PU156013 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10652510" target="_blank" >https://ieeexplore.ieee.org/document/10652510</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IVNC63480.2024.10652510" target="_blank" >10.1109/IVNC63480.2024.10652510</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noise Characterization of Graphene Sensors
Popis výsledku v původním jazyce
This study investigates the operational dynamics and challenges of graphene-based sensors, focusing on refining data measurement and processing techniques to ensure accurate identification of chemical compounds in different gas atmospheres. The research highlights the importance of sensor cleanliness and the use of analytes with physical properties matching the measurement environment. The cleaning process involves using isopropyl alcohol and heating the sensor to 70 degrees C, with cooling facilitated by the sensor's low thermal mass. This study also explores injecting saturated liquid onto the sensor to eliminate issues related to pressure and gas composition variations. Experimental methods include measuring the graphene sensor in the spectral domain using a setup that minimizes resistive noise and optimizes sensor response. Key variables such as voltage, resistor noise characteristics, signal path to the amplifier, system temperature, and bonding materials are fine-tuned to achieve the lowest parasitic noise. Time-domain and frequency-domain measurement techniques are employed to correlate resistance and impedance changes with gas concentrations, respectively.
Název v anglickém jazyce
Noise Characterization of Graphene Sensors
Popis výsledku anglicky
This study investigates the operational dynamics and challenges of graphene-based sensors, focusing on refining data measurement and processing techniques to ensure accurate identification of chemical compounds in different gas atmospheres. The research highlights the importance of sensor cleanliness and the use of analytes with physical properties matching the measurement environment. The cleaning process involves using isopropyl alcohol and heating the sensor to 70 degrees C, with cooling facilitated by the sensor's low thermal mass. This study also explores injecting saturated liquid onto the sensor to eliminate issues related to pressure and gas composition variations. Experimental methods include measuring the graphene sensor in the spectral domain using a setup that minimizes resistive noise and optimizes sensor response. Key variables such as voltage, resistor noise characteristics, signal path to the amplifier, system temperature, and bonding materials are fine-tuned to achieve the lowest parasitic noise. Time-domain and frequency-domain measurement techniques are employed to correlate resistance and impedance changes with gas concentrations, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
21000 - Nano-technology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Vacuum Nanoelectronics Conference
ISBN
979-8-3503-7976-1
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
1-2
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Brno
Datum konání akce
15. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001310530600067