Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Co dále je rozhodnutelné o polích?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F08%3APU78080" target="_blank" >RIV/00216305:26230/08:PU78080 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    What else is decidable about integer arrays?

  • Popis výsledku v původním jazyce

    This report is the full version of the corresponding FOSSCAS'08 paper, including full proofs of the achived results. In the work, we introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the $exists^* forall^*$ first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular,using our logic, one can express constraints on consecutive elements of arrays (e.g., $forall i ~.~ 0 leq i &lt; n rightarrow a[i+1]=a[i]-1$) as well as periodic facts (e.g., $forall i ~.~ i equiv_2 0 rightarrow a[i] = 0$). The decision procedure follows the automata-theoretic approach: we translate formulae into a special class of B&quot;uchi counter automata such that any model of a formula corresponds to an accepting run of an automaton, and vice versa. The emptiness problem fo

  • Název v anglickém jazyce

    What else is decidable about integer arrays?

  • Popis výsledku anglicky

    This report is the full version of the corresponding FOSSCAS'08 paper, including full proofs of the achived results. In the work, we introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the $exists^* forall^*$ first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular,using our logic, one can express constraints on consecutive elements of arrays (e.g., $forall i ~.~ 0 leq i &lt; n rightarrow a[i+1]=a[i]-1$) as well as periodic facts (e.g., $forall i ~.~ i equiv_2 0 rightarrow a[i] = 0$). The decision procedure follows the automata-theoretic approach: we translate formulae into a special class of B&quot;uchi counter automata such that any model of a formula corresponds to an accepting run of an automaton, and vice versa. The emptiness problem fo

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F07%2F0322" target="_blank" >GA102/07/0322: Pokročilé formální přístupy v návrhu a automatické verifikaci počítačových systémů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče