Description of image content by means of graph grammars
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F10%3APU90557" target="_blank" >RIV/00216305:26230/10:PU90557 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Description of image content by means of graph grammars
Popis výsledku v původním jazyce
This paper presents an idea for partial bottom-up parse of image content by use of an attributed graph grammar, in order to<br>achieve effective high-level representation of knowledge contained in image. Terminal nodes of the proposed grammar are<br>formed by image objects (points, lines, and objects detected by classifiers) and areas detected in image by various image<br>processing and segmentation methods. Based on attributes of terminal nodes, each production rule creates derived attributes<br>for high-level representation of lower-level knowledge. Graph that is parsed by graph grammar is constructed in process of<br>knowledge extraction by application of segmentation and image processing algorithms. Created graph is then processed by<br>sequentialapplication of graph grammar rules. Left side of rules is detected by isomorphism detector, and consequent rewrite<br>is performed by rule with highest priority. A part of rewrite process is represented by processing of evaluations of ver
Název v anglickém jazyce
Description of image content by means of graph grammars
Popis výsledku anglicky
This paper presents an idea for partial bottom-up parse of image content by use of an attributed graph grammar, in order to<br>achieve effective high-level representation of knowledge contained in image. Terminal nodes of the proposed grammar are<br>formed by image objects (points, lines, and objects detected by classifiers) and areas detected in image by various image<br>processing and segmentation methods. Based on attributes of terminal nodes, each production rule creates derived attributes<br>for high-level representation of lower-level knowledge. Graph that is parsed by graph grammar is constructed in process of<br>knowledge extraction by application of segmentation and image processing algorithms. Created graph is then processed by<br>sequentialapplication of graph grammar rules. Left side of rules is detected by isomorphism detector, and consequent rewrite<br>is performed by rule with highest priority. A part of rewrite process is represented by processing of evaluations of ver
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08063" target="_blank" >7E08063: Emerging, Collective Intelligence for personal, organisational and social use</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
POSTER Papers proceedings
ISBN
978-80-86943-86-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
University of West Bohemia in Pilsen
Místo vydání
Plzeň
Místo konání akce
Plzeň
Datum konání akce
1. 2. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—