Semantic Class Detectors in Video Genre Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98155" target="_blank" >RIV/00216305:26230/12:PU98155 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantic Class Detectors in Video Genre Recognition
Popis výsledku v původním jazyce
This paper presents our approach to video genre recognition which we developed for MediaEval 2011 evaluation. We treat the genre recognition task as a classification problem. We encode visual information in standard way using local features and Bag of Word representation. Audio channel is parameterized in similar way starting from its spectrogram. Further, we exploit available automatic speech transcripts and user generated meta-data for which we compute BOW representations as well. It is reasonable toexpect that semantic content of a video is strongly related to its genre, and if this semantic information was available it would make genre recognition simpler and more reliable. To this end, we used annotations for 345 semantic classes from TRECVID 2011 semantic indexing task to train semantic class detectors. Responses of these detectors were then used as features for genre recognition. The paper explains the approach in detail, it shows relative performance of the individual feature
Název v anglickém jazyce
Semantic Class Detectors in Video Genre Recognition
Popis výsledku anglicky
This paper presents our approach to video genre recognition which we developed for MediaEval 2011 evaluation. We treat the genre recognition task as a classification problem. We encode visual information in standard way using local features and Bag of Word representation. Audio channel is parameterized in similar way starting from its spectrogram. Further, we exploit available automatic speech transcripts and user generated meta-data for which we compute BOW representations as well. It is reasonable toexpect that semantic content of a video is strongly related to its genre, and if this semantic information was available it would make genre recognition simpler and more reliable. To this end, we used annotations for 345 semantic classes from TRECVID 2011 semantic indexing task to train semantic class detectors. Responses of these detectors were then used as features for genre recognition. The paper explains the approach in detail, it shows relative performance of the individual feature
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E11024" target="_blank" >7E11024: Together Anywhere, Together Anytime - Enlarged European Union</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of VISAPP 2012
ISBN
978-989-8565-03-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
640-646
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Rome
Místo konání akce
Rome
Datum konání akce
24. 2. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—