Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU117039" target="_blank" >RIV/00216305:26230/15:PU117039 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/DICTA.2015.7371318" target="_blank" >http://dx.doi.org/10.1109/DICTA.2015.7371318</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DICTA.2015.7371318" target="_blank" >10.1109/DICTA.2015.7371318</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance
Popis výsledku v původním jazyce
This paper deals with unsupervised collection of information from traffic surveillance video streams. Deployment of usable traffic surveillance systems requires minimizing of efforts per installed camera - our goal is to enroll a new view on the street without any human operator input. We propose a method of automatically collecting vehicle samples from surveillance cameras, analyze their appearance and fully automatically collect a fine-grained dataset. This dataset can be used in multiple ways, we are explicitly showcasing the following ones: fine-grained recognition of vehicles and camera calibration including the scale. The experiments show that based on the automatically collected data, make&model vehicle recognition in the wild can be done accurately: average precision 0.890. The camera scale calibration (directly enabling automatic speed and size measurement) is twice as precise as the previous existing method. Our work leads to automatic collection of traffic statistics without the costly need for manual calibration or make&model annotation of vehicle samples. Unlike most previous approaches, our method is not limited to a small range of viewpoints (such as eye-level cameras shots), which is crucial for surveillance applications.
Název v anglickém jazyce
Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance
Popis výsledku anglicky
This paper deals with unsupervised collection of information from traffic surveillance video streams. Deployment of usable traffic surveillance systems requires minimizing of efforts per installed camera - our goal is to enroll a new view on the street without any human operator input. We propose a method of automatically collecting vehicle samples from surveillance cameras, analyze their appearance and fully automatically collect a fine-grained dataset. This dataset can be used in multiple ways, we are explicitly showcasing the following ones: fine-grained recognition of vehicles and camera calibration including the scale. The experiments show that based on the automatically collected data, make&model vehicle recognition in the wild can be done accurately: average precision 0.890. The camera scale calibration (directly enabling automatic speed and size measurement) is twice as precise as the previous existing method. Our work leads to automatic collection of traffic statistics without the costly need for manual calibration or make&model annotation of vehicle samples. Unlike most previous approaches, our method is not limited to a small range of viewpoints (such as eye-level cameras shots), which is crucial for surveillance applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on
ISBN
978-1-4673-6795-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Australian Pattern Recognition Society
Místo vydání
Adelaide
Místo konání akce
Adelaide
Datum konání akce
23. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380485600107