BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121605" target="_blank" >RIV/00216305:26230/16:PU121605 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7780697/" target="_blank" >http://ieeexplore.ieee.org/document/7780697/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2016.328" target="_blank" >10.1109/CVPR.2016.328</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition
Popis výsledku v původním jazyce
We are dealing with the problem of fine-grained vehicle make&model recognition and verification. Our contribution is showing that extracting additional data from the video stream - besides the vehicle image itself - and feeding it into the deep convolutional neural network boosts the recognition performance considerably. This additional information includes: 3D vehicle bounding box used for "unpacking" the vehicle image, its rasterized low-resolution shape, and information about the 3D vehicle orientation. Experiments show that adding such information decreases classification error by 26% (the accuracy is improved from 0.772 to 0.832) and boosts verification average precision by 208% (0.378 to 0.785) compared to baseline pure CNN without any input modifications. Also, the pure baseline CNN outperforms the recent state of the art solution by 0.081. We provide an annotated set "BoxCars" of surveillance vehicle images augmented by various automatically extracted auxiliary information. Our approach and the dataset can considerably improve the performance of traffic surveillance systems.
Název v anglickém jazyce
BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition
Popis výsledku anglicky
We are dealing with the problem of fine-grained vehicle make&model recognition and verification. Our contribution is showing that extracting additional data from the video stream - besides the vehicle image itself - and feeding it into the deep convolutional neural network boosts the recognition performance considerably. This additional information includes: 3D vehicle bounding box used for "unpacking" the vehicle image, its rasterized low-resolution shape, and information about the 3D vehicle orientation. Experiments show that adding such information decreases classification error by 26% (the accuracy is improved from 0.772 to 0.832) and boosts verification average precision by 208% (0.378 to 0.785) compared to baseline pure CNN without any input modifications. Also, the pure baseline CNN outperforms the recent state of the art solution by 0.081. We provide an annotated set "BoxCars" of surveillance vehicle images augmented by various automatically extracted auxiliary information. Our approach and the dataset can considerably improve the performance of traffic surveillance systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020155" target="_blank" >TE01020155: Centrum pro rozvoj dopravních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-4673-8851-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
10
Strana od-do
3006-3015
Název nakladatele
IEEE Computer Society
Místo vydání
Las Vegas
Místo konání akce
Las Vegas
Datum konání akce
26. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000400012303008