Evolving Component Library for Approximate High Level Synthesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121663" target="_blank" >RIV/00216305:26230/16:PU121663 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11231" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11231</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI.2016.7850168" target="_blank" >10.1109/SSCI.2016.7850168</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolving Component Library for Approximate High Level Synthesis
Popis výsledku v původním jazyce
An approximate computing approach has recently been introduced for high level circuit synthesis (HLS) in order to make good use of approximate circuits at system and block level. It is assumed in HLS algorithms that a component library containing various implementations of elementary circuit components is available. An open problem is how to construct such a component library in the context of approximate computing, where the component's error is a new design variable and hence many compromise implementations exist for a given component. In this paper, we first introduce a multi-objective Cartesian genetic programming method to create a comprehensive component library containing hundreds of Pareto optimal implementations of approximate 8-bit adders and multipliers, where the error, area and delay are simultaneously optimized. Another multi-objective evolutionary algorithm is employed to solve the so called binding problem of HLS, in which suitable approximate components are assigned to nodes of the data flow graph describing a complex digital circuit. Two approaches are then proposed and compared in order to reduce the size of the library of approximate components. It is shown that a random subsampling of the component library provides satisfactory results in the context of our study. The proposed methods are evaluated using two benchmark circuits -- the reduce (sum) and DCT circuits.
Název v anglickém jazyce
Evolving Component Library for Approximate High Level Synthesis
Popis výsledku anglicky
An approximate computing approach has recently been introduced for high level circuit synthesis (HLS) in order to make good use of approximate circuits at system and block level. It is assumed in HLS algorithms that a component library containing various implementations of elementary circuit components is available. An open problem is how to construct such a component library in the context of approximate computing, where the component's error is a new design variable and hence many compromise implementations exist for a given component. In this paper, we first introduce a multi-objective Cartesian genetic programming method to create a comprehensive component library containing hundreds of Pareto optimal implementations of approximate 8-bit adders and multipliers, where the error, area and delay are simultaneously optimized. Another multi-objective evolutionary algorithm is employed to solve the so called binding problem of HLS, in which suitable approximate components are assigned to nodes of the data flow graph describing a complex digital circuit. Two approaches are then proposed and compared in order to reduce the size of the library of approximate components. It is shown that a random subsampling of the component library provides satisfactory results in the context of our study. The proposed methods are evaluated using two benchmark circuits -- the reduce (sum) and DCT circuits.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Symposium Series on Computational Intelligence
ISBN
978-1-5090-4240-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE Computational Intelligence Society
Místo vydání
Athens
Místo konání akce
Athens
Datum konání akce
6. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000400488302074