Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU122822" target="_blank" >RIV/00216305:26230/17:PU122822 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0306457316301169" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0306457316301169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ipm.2017.02.002" target="_blank" >10.1016/j.ipm.2017.02.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing
Popis výsledku v původním jazyce
This paper presents a novel approach to web page segmentation, which is one of substantial preprocessing steps when mining data from web documents. Most of the current segmentation methods are based on algorithms that work on a tree representation of web pages (DOM tree or a hierarchical rendering model) and produce another tree structure as an output. In contrast, our method uses a rendering engine to get an image of the web page, takes the smallest rendered elements of that image, performs clustering using a custom algorithm and produces a flat set of segments of a given granularity. For the clustering metrics, we use purely visual properties only: the distance of elements and their visual similarity. We experimentally evaluate the properties of our algorithm by processing 2400 web pages. On this set of web pages, we prove that our algorithm is almost 90% faster than the reference algorithm. We also show that our algorithm accuracy is between 47% and 133% of the reference algorithm accuracy with indirect correlation of our algorithms accuracy to the depth of inspected page structure. In our experiments, we also demonstrate the advantages of producing a flat segmentation structure instead of an hierarchy.
Název v anglickém jazyce
Box Clustering Segmentation: A New Method for Vision-based Page Preprocessing
Popis výsledku anglicky
This paper presents a novel approach to web page segmentation, which is one of substantial preprocessing steps when mining data from web documents. Most of the current segmentation methods are based on algorithms that work on a tree representation of web pages (DOM tree or a hierarchical rendering model) and produce another tree structure as an output. In contrast, our method uses a rendering engine to get an image of the web page, takes the smallest rendered elements of that image, performs clustering using a custom algorithm and produces a flat set of segments of a given granularity. For the clustering metrics, we use purely visual properties only: the distance of elements and their visual similarity. We experimentally evaluate the properties of our algorithm by processing 2400 web pages. On this set of web pages, we prove that our algorithm is almost 90% faster than the reference algorithm. We also show that our algorithm accuracy is between 47% and 133% of the reference algorithm accuracy with indirect correlation of our algorithms accuracy to the depth of inspected page structure. In our experiments, we also demonstrate the advantages of producing a flat segmentation structure instead of an hierarchy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION PROCESSING & MANAGEMENT
ISSN
0306-4573
e-ISSN
1873-5371
Svazek periodika
53
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
735-750
Kód UT WoS článku
000396972300012
EID výsledku v databázi Scopus
2-s2.0-85013223226