Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Functional Verification Based Platform for Evaluating Fault Tolerance Properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126382" target="_blank" >RIV/00216305:26230/17:PU126382 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0141933117300200" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0141933117300200</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micpro.2017.06.004" target="_blank" >10.1016/j.micpro.2017.06.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Functional Verification Based Platform for Evaluating Fault Tolerance Properties

  • Popis výsledku v původním jazyce

    The fundamental topic of this article is the interconnection of simulation-based functional verification, which is standardly used for removing design errors from simulated hardware systems, with fault-tolerant mechanisms that serve for hardening electro-mechanical FPGA SRAM-based systems against faults. For this purpose, an evaluation platform that connects these two approaches was designed and tested for one particular casestudy: a robot that moves through a maze (its electronic part is the robot controller and the mechanical part is the robot itself). However, in order to make the evaluation platform generally applicable for various electro-mechanical systems, several subtopics and sub-problems need to solved. For example, the electronic controller can have several representations (hard-coded, processor based, neural-network based) and for each option, extendability of verification environment must be possible. Furthermore, in order to check complex behavior of verified systems, different verification scenarios must be prepared and this is the role of random generators or effective regression tests scenarios. Also, despite the transfer of the controller to the SRAM-based FPGA which was solved together with an injection of artificial faults, many more experiments must be done in order to create a sufficient fault-tolerant methodology that indicates how a general electronic controller can be hardened against faults by different fault-tolerant mechanisms in order to make it reliable enough in the real environment. All these additional topics are presented in this article together with some side experiments that led to their integration into the evaluation platform.

  • Název v anglickém jazyce

    Functional Verification Based Platform for Evaluating Fault Tolerance Properties

  • Popis výsledku anglicky

    The fundamental topic of this article is the interconnection of simulation-based functional verification, which is standardly used for removing design errors from simulated hardware systems, with fault-tolerant mechanisms that serve for hardening electro-mechanical FPGA SRAM-based systems against faults. For this purpose, an evaluation platform that connects these two approaches was designed and tested for one particular casestudy: a robot that moves through a maze (its electronic part is the robot controller and the mechanical part is the robot itself). However, in order to make the evaluation platform generally applicable for various electro-mechanical systems, several subtopics and sub-problems need to solved. For example, the electronic controller can have several representations (hard-coded, processor based, neural-network based) and for each option, extendability of verification environment must be possible. Furthermore, in order to check complex behavior of verified systems, different verification scenarios must be prepared and this is the role of random generators or effective regression tests scenarios. Also, despite the transfer of the controller to the SRAM-based FPGA which was solved together with an injection of artificial faults, many more experiments must be done in order to create a sufficient fault-tolerant methodology that indicates how a general electronic controller can be hardened against faults by different fault-tolerant mechanisms in order to make it reliable enough in the real environment. All these additional topics are presented in this article together with some side experiments that led to their integration into the evaluation platform.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20206 - Computer hardware and architecture

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Microprocessors and Microsystems

  • ISSN

    0141-9331

  • e-ISSN

    1872-9436

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    145-159

  • Kód UT WoS článku

    000407984000013

  • EID výsledku v databázi Scopus

    2-s2.0-85020644987