Approximate Circuits in Low-Power Image and Video Processing: The Approximate Median Filter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126444" target="_blank" >RIV/00216305:26230/17:PU126444 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.radioeng.cz/fulltexts/2017/17_03_0623_0632.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2017/17_03_0623_0632.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2017.0623" target="_blank" >10.13164/re.2017.0623</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Circuits in Low-Power Image and Video Processing: The Approximate Median Filter
Popis výsledku v původním jazyce
Low power image and video processing circuits are crucial in many applications of computer vision. Traditional techniques used to reduce power consumption in these applications have recently been accompanied by circuit approximation methods which exploit the fact that these applications are highly error resilient and, hence, the quality of image processing can be traded for power consumption. On the basis of a literature survey, we identified the components whose implementations are the most frequently approximated and the methods used for obtaining these approximations. One of the components is the median image filter. We propose, evaluate and compare two approximation strategies based on Cartesian genetic programming applied to approximate various common implementations of the median filter. For filters developed using these approximation strategies, trade-offs between the quality of filtering and power consumption are investigated. Under conditions of our experiments we conclude that better trade-offs are achieved when the image filter is evolved from scratch rather than a conventional filter is approximated.
Název v anglickém jazyce
Approximate Circuits in Low-Power Image and Video Processing: The Approximate Median Filter
Popis výsledku anglicky
Low power image and video processing circuits are crucial in many applications of computer vision. Traditional techniques used to reduce power consumption in these applications have recently been accompanied by circuit approximation methods which exploit the fact that these applications are highly error resilient and, hence, the quality of image processing can be traded for power consumption. On the basis of a literature survey, we identified the components whose implementations are the most frequently approximated and the methods used for obtaining these approximations. One of the components is the median image filter. We propose, evaluate and compare two approximation strategies based on Cartesian genetic programming applied to approximate various common implementations of the median filter. For filters developed using these approximation strategies, trade-offs between the quality of filtering and power consumption are investigated. Under conditions of our experiments we conclude that better trade-offs are achieved when the image filter is evolved from scratch rather than a conventional filter is approximated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-17538S" target="_blank" >GA16-17538S: Přibližná ekvivalence pro aproximativní počítání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
623-632
Kód UT WoS článku
000411297800001
EID výsledku v databázi Scopus
2-s2.0-85029600112