3D Image Segmentation using Graph-Cut and Random Forests Learned from Partial Annotations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU126812" target="_blank" >RIV/00216305:26230/18:PU126812 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=3oP1dAKzK9U=&t=1" target="_blank" >http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=3oP1dAKzK9U=&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0006588801240131" target="_blank" >10.5220/0006588801240131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Image Segmentation using Graph-Cut and Random Forests Learned from Partial Annotations
Popis výsledku v původním jazyce
Human tissue segmentation is a critical step not only in the process of their visualization and diagnostics but also for pre-operative planning and custom implants engineering. Manual segmentation of three-dimensional data obtained through CT scanning is very time demanding task for clinical experts and therefore the automation of this process is required. Results of fully automatic approaches often lack the required precision in cases of non-standard treatment, which is often the case when computer planning is important, and thus semi-automatic approaches demanding a certain level of expert interaction are being designed. This work presents a semi-automatic method of 3D segmentation applicable to arbitrary tissue that takes several manually annotated slices as an input. These slices are used for training a random forest classifiers to predict the annotation for the remaining part of the CT scan and final segmentation is obtained using the graph-cut method. Precision of the proposed method is evaluated on CT datasets of hard tissue including tibia, humerus and radius bones, mandible and single teeth using the Dice coefficient of overlap compared to fully expert-annotated segmentations of these tissues.
Název v anglickém jazyce
3D Image Segmentation using Graph-Cut and Random Forests Learned from Partial Annotations
Popis výsledku anglicky
Human tissue segmentation is a critical step not only in the process of their visualization and diagnostics but also for pre-operative planning and custom implants engineering. Manual segmentation of three-dimensional data obtained through CT scanning is very time demanding task for clinical experts and therefore the automation of this process is required. Results of fully automatic approaches often lack the required precision in cases of non-standard treatment, which is often the case when computer planning is important, and thus semi-automatic approaches demanding a certain level of expert interaction are being designed. This work presents a semi-automatic method of 3D segmentation applicable to arbitrary tissue that takes several manually annotated slices as an input. These slices are used for training a random forest classifiers to predict the annotation for the remaining part of the CT scan and final segmentation is obtained using the graph-cut method. Precision of the proposed method is evaluated on CT datasets of hard tissue including tibia, humerus and radius bones, mandible and single teeth using the Dice coefficient of overlap compared to fully expert-annotated segmentations of these tissues.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020415" target="_blank" >TE01020415: Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING
ISBN
978-989-758-278-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
124-131
Název nakladatele
Institute for Systems and Technologies of Information, Control and Communication
Místo vydání
Funchal
Místo konání akce
Funchal, Madeira - Portugal
Datum konání akce
19. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—